cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A035170 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -20.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 0, 2, 0, 2, 2, 1, 0, 3, 0, 1, 4, 0, 2, 2, 1, 0, 4, 2, 2, 2, 0, 1, 0, 0, 2, 3, 0, 0, 0, 1, 2, 4, 2, 0, 3, 2, 2, 2, 3, 1, 0, 0, 0, 4, 0, 2, 0, 2, 0, 2, 2, 0, 6, 1, 0, 0, 2, 0, 4, 2, 0, 3, 0, 0, 2, 0, 0, 0, 0, 1, 5, 2, 2, 4, 0, 2, 4, 0, 2, 3, 0, 2, 0, 2, 0, 2, 0, 3, 0, 1, 2, 0, 2, 0, 4
Offset: 1

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Coefficients of Dedekind zeta function for the quadratic number field of discriminant -20. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Examples

			q + q^2 + 2*q^3 + q^4 + q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + q^10 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 253.

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    QP = QPochhammer; s = (1/q) * (QP[q^2]*QP[q^4]*QP[q^5]*(QP[q^10] / (QP[q]* QP[q^20]))-1) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 04 2015 *)
    a[n_] := If[n < 0, 0, DivisorSum[ n, KroneckerSymbol[-20, #] &]]; Table[a[n], {n, 1, 100}] (* G. C. Greubel, Dec 12 2017 *)
  • PARI
    direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker( -20, d)))} \\ Michael Somos, Sep 10 2005
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -20, p) * X) )[n])} \\ Michael Somos, Sep 10 2005
    
  • PARI
    {a(n) = if( n<1, 0, qfrep([1, 0; 0, 5], n)[n] + qfrep([2, 1; 1, 3], n)[n])} \\ Michael Somos, Oct 21 2006

Formula

Multiplicative with a(2^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 3, 7, 9 (mod 20), a(p^e) = (1+(-1)^e)/2 if p == 11, 13, 17, 19 (mod 20). - Michael Somos, Sep 10 2005
G.f.: Sum_{k>0} x^k * (1 + x^(2*k)) * (1 + x^(6*k)) / (1 + x^(10*k)). - Michael Somos, Sep 10 2005
a(2*n) = a(5*n) = a(n), a(20*n + 11) = a(20*n + 13) = a(20*n + 17) = a(20*n + 19) = 0.
Moebius transform is period 20 sequence [ 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, ...]. - Michael Somos, Oct 21 2006
Expansion of -1 + (phi(q) * phi(q^5) + phi(q^2) * phi(q^10) + 4 * q^3 * psi(q^4)* psi(q^20)) / 2 in powers of q where phi(), psi() are Ramanujan theta functions.
2*a(n) = A028586(n) + A033718(n) if n>0. - Michael Somos, Oct 21 2006
a(n) = A124233(n) unless n=0. a(n) = |A111949(n)|. a(2*n + 1) = A129390(n). a(4*n + 3) = 2 * A033764(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(5) = 1.404962... . - Amiram Eldar, Oct 11 2022

A216283 Number of nonnegative solutions to the equation x^2+5*y^2 = n.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

V. Raman, Sep 03 2012

Keywords

Comments

Records occur at 1, 9, 81, 189, 441, 1449, 3969, 12789, 13041, 30429, ... - Antti Karttunen, Aug 23 2017

Examples

			For n = 9, there are two solutions: 9 = 3^2 + 5*(0^2) = 2^2 + 5*(1^2), thus a(9) = 2.
For n = 81, there are three solutions: 81  = 9^2 + 5*(0^2) = 6^2 + 5*(3^2) = 1^2 + 5*(4^2), thus a(81) = 3.
		

Crossrefs

Cf. A033718 (all solutions x^2+5*y^2 = n).
Cf. A020669 (positions of nonzeros).

Programs

  • PARI
    N=666;  x='x+O('x^N);
    T(x)=sum(n=0,ceil(sqrt(N)),x^(n*n));
    Vec(T(x)*T(x^5))
    /* Joerg Arndt, Sep 21 2012 */
    
  • Scheme
    (define (A216283 n) (cond ((< n 2) 1) (else (let loop ((k (A000196 n)) (s 0)) (if (< k 0) s (let ((x (- n (* k k)))) (loop (- k 1) (+ s (if (zero? (modulo x 5)) (A010052 (/ x 5)) 0))))))))) ;; Antti Karttunen, Aug 23 2017

Formula

G.f. T(x) * T(x^5) where T(x) = sum(n>=0, x^(n^2) ). - Joerg Arndt, Sep 21 2012

Extensions

Examples from Antti Karttunen, Aug 23 2017

A306518 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{d|k} theta_3(q^d).

Original entry on oeis.org

1, 1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 0, 4, 2, 1, 2, 2, 2, 2, 0, 1, 2, 0, 4, 6, 0, 0, 1, 2, 2, 0, 4, 0, 4, 0, 1, 2, 0, 6, 2, 4, 0, 0, 0, 1, 2, 2, 0, 6, 2, 8, 4, 2, 2, 1, 2, 0, 4, 2, 4, 4, 8, 0, 6, 0, 1, 2, 2, 2, 4, 0, 14, 0, 6, 2, 0, 0, 1, 2, 0, 4, 6, 4, 0, 8, 0, 6, 0, 4, 0, 1, 2, 2, 0, 2, 0, 8, 2, 6, 6, 8, 0, 4, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 21 2019

Keywords

Examples

			Square array begins:
  1,  1,  1,  1,  1,  1,  ...
  2,  2,  2,  2,  2,  2,  ...
  0,  2,  0,  2,  0,  2,  ...
  0,  4,  2,  4,  0,  6,  ...
  2,  2,  6,  4,  2,  6,  ...
  0,  0,  0,  4,  2,  4,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[EllipticTheta[3, 0, q^d], {d, Divisors[k]}], {q, 0, n}]][i - n + 1], {i, 0, 13}, {n, 0, i}] // Flatten

Formula

G.f. of column k: Product_{d|k} theta_3(q^d).

A317642 Expansion of theta_3(q^2)*theta_3(q^5), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 0, 2, 0, 0, 2, 0, 4, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 2, 0, 4, 4, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 2, 0, 4, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 4, 0, 0, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2018

Keywords

Comments

Number of integer solutions to the equation 2*x^2 + 5*y^2 = n.

Examples

			G.f. = 1 + 2*q^2 + 2*q^5 + 4*q^7 + 2*q^8 + 4*q^13 + 2*q^18 + 2*q^20 + 4*q^22 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 98; CoefficientList[Series[EllipticTheta[3, 0, q^2] EllipticTheta[3, 0, q^5], {q, 0, nmax}], q]
    nmax = 98; CoefficientList[Series[QPochhammer[-q^2, -q^2] QPochhammer[-q^5, -q^5]/(QPochhammer[q^2, -q^2] QPochhammer[q^5, -q^5]), {q, 0, nmax}], q]

Formula

G.f.: Product_{k>=1} (1 + x^(4*k-2))^2*(1 - x^(4*k))*(1 + x^(10*k-5))^2*(1 - x^(10*k)).
Showing 1-4 of 4 results.