cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033719 Coefficients in expansion of theta_3(q) * theta_3(q^7) in powers of q.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 2, 4, 2, 0, 4, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 2, 4, 0, 0, 8, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 10, 0, 0, 4, 0, 0, 0, 4, 4, 0, 0, 0, 0, 4, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Number of integer solutions to the equation x^2 + 7*y^2 = n.

Examples

			G.f. = 1 + 2*x + 2*x^4 + 2*x67 + 4*x^8 + 2*x^9 + 4*x^11 + 6*x^16 + 4*x^23 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p 102 eq 9.

Programs

  • Maple
    seq(coeff(series(mul((1-x^(2*k))*(1+x^(2*k-1))^2*(1-x^(14*k))*(1+x^(14*k-7))^2,k=1..n),x,n+1), x, n), n = 0 .. 110); # Muniru A Asiru, Feb 02 2019
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^7], {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-2 * eta(x^7 + A)^-2 * eta(x^14 + A)^5 * eta(x^28 + A)^-2, n))};

Formula

Coefficients in expansion of Sum_{ i, j = -inf .. inf } q^(i^2 + 7*j^2).
Euler transform of period 28 sequence [ 2, -3, 2, -1, 2, -3, 4, -1, 2, -3, 2, -1, 2, -6, 2, -1, 2, -3, 2, -1, 4, -3, 2, -1, 2, -3, 2, -2, ...].
Expansion of (eta(q^2) * eta(q^14))^5 / (eta(q) * eta(q^4) * eta(q^7) * eta(q^28))^2 in powers of q.
G.f.: Product_{k>0} (1 - x^(2*k)) * (1 + x^(2*k-1))^2 * (1 - x^(14*k)) * (1 + x^(14*k-7))^2.