A033719 Coefficients in expansion of theta_3(q) * theta_3(q^7) in powers of q.
1, 2, 0, 0, 2, 0, 0, 2, 4, 2, 0, 4, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 2, 4, 0, 0, 8, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 10, 0, 0, 4, 0, 0, 0, 4, 4, 0, 0, 0, 0, 4, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 2*x^4 + 2*x67 + 4*x^8 + 2*x^9 + 4*x^11 + 6*x^16 + 4*x^23 + ...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p 102 eq 9.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
- G. E. Andrews, R. Lewis and Z.-G. Liu, An identity relating a theta series to a sum of Lambert series, Bull. London Math. Soc., 33 (2001), 25-31.
Programs
-
Maple
seq(coeff(series(mul((1-x^(2*k))*(1+x^(2*k-1))^2*(1-x^(14*k))*(1+x^(14*k-7))^2,k=1..n),x,n+1), x, n), n = 0 .. 110); # Muniru A Asiru, Feb 02 2019
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^7], {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-2 * eta(x^7 + A)^-2 * eta(x^14 + A)^5 * eta(x^28 + A)^-2, n))};
Formula
Coefficients in expansion of Sum_{ i, j = -inf .. inf } q^(i^2 + 7*j^2).
Euler transform of period 28 sequence [ 2, -3, 2, -1, 2, -3, 4, -1, 2, -3, 2, -1, 2, -6, 2, -1, 2, -3, 2, -1, 4, -3, 2, -1, 2, -3, 2, -2, ...].
Expansion of (eta(q^2) * eta(q^14))^5 / (eta(q) * eta(q^4) * eta(q^7) * eta(q^28))^2 in powers of q.
G.f.: Product_{k>0} (1 - x^(2*k)) * (1 + x^(2*k-1))^2 * (1 - x^(14*k)) * (1 + x^(14*k-7))^2.
Comments