cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A205974 a(n) = Fibonacci(n)*A033719(n) for n>=1, with a(0)=1, where A033719 lists the coefficients in theta_3(q)*theta_3(q^7).

Original entry on oeis.org

1, 2, 0, 0, 6, 0, 0, 26, 84, 68, 0, 356, 0, 0, 0, 0, 5922, 0, 0, 0, 0, 0, 0, 114628, 0, 150050, 0, 0, 635622, 2056916, 0, 0, 17426472, 0, 0, 0, 29860704, 96631268, 0, 0, 0, 0, 0, 1733977748, 2805634932, 0, 0, 0, 0, 15557484098, 0, 0, 0, 213265164692, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare g.f. to the Lambert series of A033719:
1 + 2*Sum_{n>=1} Kronecker(n,7)*x^n/(1-(-x)^n).

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^4 + 26*x^7 + 84*x^8 + 68*x^9 + 356*x^11 +...
where A(x) = 1 + 1*2*x + 3*2*x^4 + 13*2*x^7 + 21*4*x^8 + 34*2*x^9 + 89*4*x^11 + 987*6*x^16 + 28657*4*x^23 +...+ Fibonacci(n)*A033719(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 2*( 1*x/(1+x-x^2) + 1*x^2/(1-3*x^2+x^4) - 2*x^3/(1+4*x^3-x^6) + 3*x^4/(1-7*x^4+x^8) - 5*x^5/(1+11*x^5-x^10) - 8*x^6/(1-18*x^6+x^12) + 0*13*x^7/(1+29*x^7-x^14) +...).
The values of the symbol Kronecker(n,7) repeat [1,1,-1,1,-1,-1,0, ...].
		

Crossrefs

Cf. A209454 (Pell variant).

Programs

  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 + 2*sum(m=1,n,fibonacci(m)*kronecker(m,7)*x^m/(1-Lucas(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: 1 + 2*Sum_{n>=1} Fibonacci(n)*Kronecker(n,7)*x^n/(1 - Lucas(n)*(-x)^n + (-1)^n*x^(2*n)).

A209454 a(n) = Pell(n)*A033719(n) for n>=1, with a(0)=1, where A033719 lists the coefficients in theta_3(q)*theta_3(q^7).

Original entry on oeis.org

1, 2, 0, 0, 24, 0, 0, 338, 1632, 1970, 0, 22964, 0, 0, 0, 0, 2824992, 0, 0, 0, 0, 0, 0, 900234724, 0, 2623476242, 0, 0, 36915112104, 178241928596, 0, 0, 5016108528384, 0, 0, 0, 42600007379160, 205691031143924, 0, 0, 0, 0, 0, 40725785296405556, 98320743200877072, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to 1 + 2*Sum_{n>=1} Kronecker(n,7)*x^n/(1-(-x)^n) (the Lambert series of A033719).

Examples

			G.f.: A(x) = 1 + 2*x + 24*x^4 + 338*x^7 + 1632*x^8 + 1970*x^9 + 22964*x^11 +...
where A(x) = 1 + 1*2*x + 12*2*x^4 + 169*2*x^7 + 408*4*x^8 + 985*2*x^9 + 5741*4*x^11 + 470832*6*x^16 + 225058681*4*x^23 +...+ Pell(n)*A033719(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 2*( 1*x/(1+2*x-x^2) + 2*x^2/(1-6*x^2+x^4) - 5*x^3/(1+14*x^3-x^6) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) - 70*x^6/(1-198*x^6+x^12) + 0*169*13*x^7/(1+478*x^7-x^14) +...).
The values of the symbol Kronecker(n,7) repeat [1,1,-1,1,-1,-1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A033719[n_]:= SeriesCoefficient[EllipticTheta[3, 0, x] EllipticTheta[3, 0, x^7], {x, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A033719[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 2*sum(m=1,n,Pell(m)*kronecker(m,7)*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: 1 + 2*Sum_{n>=1} Pell(n)*Kronecker(n,7)*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A133675 Negative discriminants with form class number 1 (negated).

Original entry on oeis.org

3, 4, 7, 8, 11, 12, 16, 19, 27, 28, 43, 67, 163
Offset: 1

Views

Author

N. J. A. Sloane, May 16 2003

Keywords

Comments

The list on p. 260 of Cox is missing -12, the list in Theorem 7.30 on p. 149 is correct. - Andrew V. Sutherland, Sep 02 2012
Let b(k) be the number of integer solutions of f(x,y) = k, where f(x,y) is the principal binary quadratic form with discriminant d<0 (i.e., f(x,y) = x^2 - (d/4)*y^2 if 4|d, x^2 + x*y + ((1-d)/4)*y^2 otherwise), then this sequence lists |d| such that {b(k)/b(1): k>=1} is multiplicative. See Crossrefs for the actual sequences. - Jianing Song, Nov 20 2019

References

  • D. A. Cox, Primes of the form x^2+ny^2, Wiley, New York, 1989, pp. 149, 260.
  • D. E. Flath, Introduction to Number Theory, Wiley-Interscience, 1989.

Crossrefs

The sequences {b(k): k>=0}: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A033716 (d=-12), A004531 (d=-16), A028641 (d=-19), A138805 (d=-27), A033719 (d=-28), A138811 (d=-43), A318984 (d=-67), A318985 (d=-163).
The sequences {b(k)/b(1): k>=1}: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A096936 (d=-12), A113406 (d=-16), A035171 (d=-19), A138806 (d=-27), A110399 (d=-28), A035147 (d=-43), A318982 (d=-67), A318983 (d=-163).

Programs

  • PARI
    ok(n)={(-n)%4<2 && quadclassunit(-n).no == 1} \\ Andrew Howroyd, Jul 20 2018

Extensions

Corrected by David Brink, Dec 29 2007

A110399 Expansion of (theta_3(q)*theta_3(q^7) - 1)/2 in powers of q.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 2, 1, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 2, 0, 0, 4, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 5, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Oct 22 2005

Keywords

Comments

Half the number of integer solutions to x^2 + 7*y^2 = n. - Jianing Song, Nov 20 2019

Examples

			G.f. = x + x^4 + x^7 + 2*x^8 + x^9 + 2*x^11 + 3*x^16 + 2*x^23 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 302, Entry 17(ii).

Crossrefs

Cf. A033719 (number of integer solutions to x^2 + 7*y^2 = n).
Similar sequences: A096936, A113406, A138806.

Programs

  • Mathematica
    f[p_, e_] := If[MemberQ[{1, 2, 4}, Mod[p, 7]], e + 1, (1 + (-1)^e)/2]; f[2, e_] := e - 1; f[7, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 07 2023 *)
  • PARI
    {a(n) = my(x); if( n<1, 0, x = valuation(n, 2); abs(x -1) * sumdiv(n/2^x, d, kronecker(-28, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, e-1,  p==7, 1, kronecker(-7, p)==-1, (1+(-1)^e)/2, e+1)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, A = x *O(x^n); polcoeff( (eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-2 * eta(x^7 + A)^-2 * eta(x^14 + A)^5 * eta(x^28 + A)^-2 - 1)/2, n))};

Formula

a(n) is multiplicative with a(2^e) = |e-1|, a(7^e)= 1, a(p^e) = e+1 if p == 1, 2, 4 (mod 7), a(p^e) = (1+(-1)^e)/2 if p == 3, 5, 6 (mod 7).
G.f.: Sum_{k>0} Kronecker(-7, k) x^k/(1-(-x)^k).
G.f.: (theta_3(q)*theta_3(q^7) - 1)/2 where theta_3(q) = 1 + 2*(q + q^4 + q^9 + ...).
a(2*n + 1) = A035162(2*n + 1) = A035182(2*n + 1). A033719(n) = 2*a(n) if n > 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(7)) = 0.593705... . - Amiram Eldar, Nov 16 2023

A133827 Number of solutions to x + 7 * y = 2 * n in triangular numbers.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 25 2007, Oct 04 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
G.f. is called omega(q) by Berkovich and Yesilyurt.

Examples

			G.f. = 1 + x^3 + x^4 + 2*x^5 + 2*x^11 + x^12 + 2*x^14 + 2*x^18 + 2*x^21 + x^24 + ...
G.f. = q + q^7 + q^9 + 2*q^11 + 2*q^23 + q^25 + 2*q^29 + 2*q^37 + 2*q^43 + q^49 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, Mod[#, 2] KroneckerSymbol[ -28, #] &]]; (* Michael Somos, Oct 30 2015 *)
    a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(7/2)], {x, 0, 2 n + 1}]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv(n, d, (d%2) * kronecker( -28, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod(k = 1, matsize(A)[1], [p, e] = A[k, ]; if(p == 2, 0, p == 7, 1, 1 == kronecker( -7, p), e + 1, 1-e%2)))};

Formula

Expansion of psi(x^4) * phi(x^14) + x^3 * psi(x^28) * phi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(7^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7), b(p^e) = e + 1 if p == 1, 2, 4 (mod 7).
a(7*n + 1) = a(7*n + 2) = a(7*n + 6) = 0. a(7*n + 3) = a(n).
Expansion of psi(q) * psi(q^7) - q * psi(q^2) * psi(q^14) = (psi(q) * psi(q^7) + psi(-q) * psi(-q^7)) / 2 in powers of q^2 where psi() is a Ramanujan theta function.
a(n) = A035162(2*n + 1) = A035182(2*n + 1) = A110399(2*n + 1) = A121454(2*n + 1).
2 * a(n) = A002652(2*n + 1) = A033719(2*n + 1). - Michael Somos, Dec 30 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(7)) = 0.593705... . - Amiram Eldar, Dec 29 2023

A306518 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{d|k} theta_3(q^d).

Original entry on oeis.org

1, 1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 0, 4, 2, 1, 2, 2, 2, 2, 0, 1, 2, 0, 4, 6, 0, 0, 1, 2, 2, 0, 4, 0, 4, 0, 1, 2, 0, 6, 2, 4, 0, 0, 0, 1, 2, 2, 0, 6, 2, 8, 4, 2, 2, 1, 2, 0, 4, 2, 4, 4, 8, 0, 6, 0, 1, 2, 2, 2, 4, 0, 14, 0, 6, 2, 0, 0, 1, 2, 0, 4, 6, 4, 0, 8, 0, 6, 0, 4, 0, 1, 2, 2, 0, 2, 0, 8, 2, 6, 6, 8, 0, 4, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 21 2019

Keywords

Examples

			Square array begins:
  1,  1,  1,  1,  1,  1,  ...
  2,  2,  2,  2,  2,  2,  ...
  0,  2,  0,  2,  0,  2,  ...
  0,  4,  2,  4,  0,  6,  ...
  2,  2,  6,  4,  2,  6,  ...
  0,  0,  0,  4,  2,  4,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[EllipticTheta[3, 0, q^d], {d, Divisors[k]}], {q, 0, n}]][i - n + 1], {i, 0, 13}, {n, 0, i}] // Flatten

Formula

G.f. of column k: Product_{d|k} theta_3(q^d).
Showing 1-6 of 6 results.