A034007 First differences of A045891.
1, 0, 2, 4, 9, 20, 44, 96, 208, 448, 960, 2048, 4352, 9216, 19456, 40960, 86016, 180224, 376832, 786432, 1638400, 3407872, 7077888, 14680064, 30408704, 62914560, 130023424, 268435456, 553648128, 1140850688, 2348810240
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Frank Ellermann, Illustration of binomial transforms.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Crossrefs
Programs
-
Magma
[1,0,2] cat [(n+5)*2^(n-4): n in [3..30]]; // G. C. Greubel, Sep 27 2022
-
Mathematica
Join[{1,0,2,a=4},Table[a=(2*(n+7)*a)/(n+6),{n,2,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
-
PARI
a(n)=if(n<3,[1,0,2][n+1],(n+5)*2^(n-4)) \\ Charles R Greathouse IV, Jun 01 2011
-
SageMath
[1,0,2]+[(n+5)*2^(n-4) for n in range(3,30)] # G. C. Greubel, Sep 27 2022
Formula
a(n) = Sum_{k = 0..n-3} (k+4)*binomial(n-3,k) for n >= 3. - N. J. A. Sloane, Jan 30 2008
a(n) = (n+5)*2^(n-4), n >= 3; a(0)=1, a(1)=0, a(2)=2.
G.f.: ((1-x)^2/(1-2*x))^2.
a(n) = Sum_{k=0..n} (k+1)*C(n-3,n-k). - Peter Luschny, Apr 20 2015
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=2} 1/a(n) = 512*log(2) - 74327/210.
Sum_{n>=2} (-1)^n/a(n) = 14579/70 - 512*log(3/2). (End)
E.g.f.: (1/16)*(11 - 12*x + 2*x^2 + (5+2*x)*exp(2*x)). - G. C. Greubel, Sep 27 2022
Comments