cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034009 Convolution of A000295(n+2) (n>=0) with itself.

Original entry on oeis.org

1, 8, 38, 140, 443, 1268, 3384, 8584, 20965, 49744, 115402, 262996, 590831, 1311900, 2884956, 6293040, 13633305, 29362200, 62916910, 134220380, 285215651, 603983108, 1275072128, 2684358680, 5637149133, 11811165088
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(16*(n-3)*2^n+(n+7)*(n^2+11*n+42) div 6): n in [0..30]]; // Vincenzo Librandi, Sep 20 2014
  • Maple
    seq(16*(n-3)*2^n+(n+7)*(n^2+11*n+42)/6, n=0..100); # Robert Israel, Sep 19 2014
  • Mathematica
    Table[Sum[ k Binomial[n + 5, k + 4], {k, 0, n+1}], {n, 0, 26}] (* Zerinvary Lajos, Jul 08 2009 *)
    Table[(16 (n-3) 2^n + (n + 7) (n^2 + 11 n + 42) / 6), {n, 0, 40}] (* Vincenzo Librandi, Sep 20 2014 *)

Formula

(2^(n+2)-n-3) '*' (2^(n+2)-n-3) where '*' denotes the convolution product.
G.f.: 1/((1-2*x)*(1-x)^2)^2.
Partial sums of A045889.
a(n) = (n-3)*2^(n+4)+binomial(n+3,3)+4*(binomial(n+1,2)+4*n+12)
= 2^(n+4)*(n-3)+(n+7)*(n*(n+11)+42)/6.
a(n) = binomial(n+3,3)*hypergeom([2,-n],[-n-3],2). - Peter Luschny, Sep 19 2014
a(n) = Sum_{k=0..n+4} Sum_{i=0..n+4} (i-k) * C(n-k+4,i+2). - Wesley Ivan Hurt, Sep 19 2017

Extensions

Edited by Peter Luschny, Sep 20 2014