A034087 Numbers divisible by the sum of the squares of their digits.
1, 10, 20, 50, 100, 110, 111, 120, 130, 133, 200, 210, 240, 267, 298, 310, 315, 360, 372, 376, 400, 420, 480, 500, 532, 550, 630, 803, 917, 973, 1000, 1010, 1011, 1020, 1030, 1071, 1100, 1101, 1110, 1134, 1148, 1200, 1211, 1222, 1290, 1300, 1302, 1316
Offset: 1
Examples
a(100) = 4131 since 4^2+1^2+3^2+1^2=27 divides 4131. - _Carmine Suriano_, May 04 2013
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..3465 from Carmine Suriano)
Programs
-
Maple
isA034087 := proc(n) if n mod A003132(n) = 0 then true ; else false ; end if ; end proc: for n from 1 to 1800 do if isA034087(n) then printf("%d ",n) ; end if ; end do ; # R. J. Mathar, Feb 25 2007
-
Mathematica
Select[Range[1500], Divisible[#, Plus @@ (IntegerDigits[#]^2)] &] (* Amiram Eldar, Jan 31 2021 *)
-
PARI
isok(m) = !(m % norml2(digits(m))); \\ Michel Marcus, Jan 31 2021
-
Python
def ok(n): return n and n%sum(di**2 for di in map(int, str(n))) == 0 print([k for k in range(1317) if ok(k)]) # Michael S. Branicky, Jan 10 2025
Formula
A003132[a(n)] | a(n). - R. J. Mathar, Feb 25 2007