cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A034088 Numbers divisible by the sum of the cubes of their digits.

Original entry on oeis.org

1, 10, 100, 110, 111, 153, 200, 221, 370, 371, 407, 500, 702, 1000, 1010, 1011, 1040, 1100, 1101, 1110, 1120, 1210, 1215, 1232, 1323, 1530, 1728, 2000, 2030, 2080, 2110, 2210, 2240, 2331, 2352, 2376, 2464, 2580, 3212, 3213, 3304, 3456, 3520, 3700, 3710
Offset: 1

Views

Author

Keywords

Comments

Ratio between original number and a(n) = 1 for n = 1, 6, 9, 10, 11, ... a(n)= 1, 153, 370, 371, 407,... - Carmine Suriano, May 04 2013

Examples

			12672 is a term since 1^3+2^3+6^3+7^3+2^3 = 576 divides 12672. - _Carmine Suriano_, May 04 2013
		

Crossrefs

Programs

  • Mathematica
    Select[Range[4000], Divisible[#, Plus @@ (IntegerDigits[#]^3)] &] (* Amiram Eldar, Jan 31 2021 *)

Extensions

Offset corrected by Amiram Eldar, Jan 31 2021

A117562 Numbers n such that n is a multiple of the sum of decimal digits squared of n.

Original entry on oeis.org

0, 1, 10, 20, 50, 100, 110, 111, 120, 130, 133, 200, 210, 240, 267, 298, 310, 315, 360, 372, 376, 400, 420, 480, 500, 532, 550, 630, 803, 917, 973, 1000, 1010, 1011, 1020, 1030, 1071, 1100, 1101, 1110, 1134, 1148, 1200, 1211, 1222, 1290, 1300, 1302, 1316
Offset: 1

Views

Author

Zak Seidov, Apr 27 2006

Keywords

Comments

The same as A034087 with 0 inserted as first term.

Crossrefs

Cf. A034087.

Programs

  • Mathematica
    Reap[Do[If[IntegerQ[n/Total[IntegerDigits[n]^2]],Sow[n]],{n,1,2000}]][[2,1]]
    Join[{0},Select[Range[1500],Divisible[#,Total[IntegerDigits[#]^2]]&]] (* Harvey P. Dale, Feb 28 2023 *)

Extensions

Edited by Robert Israel, Apr 14 2020

A169665 Numbers divisible by the sum of 4th powers of their digits.

Original entry on oeis.org

1, 10, 100, 102, 110, 111, 1000, 1010, 1011, 1020, 1100, 1101, 1110, 1121, 1122, 1634, 2000, 2322, 4104, 5000, 8208, 9474, 10000, 10010, 10011, 10100, 10101, 10110, 10200, 10412, 11000, 11001, 11010, 11100, 11210, 11220, 12502, 12521, 14758
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2010

Keywords

Examples

			12521 is a term since 1^4 + 2^4 + 5^4 + 2^4 + 1^4 = 659, and 12521 = 19*659;
89295 is a term since 8^4 + 9^4 + 2^4 + 9^4 + 5^4 = 17859, and 89295 = 5*17859.
		

Crossrefs

Programs

  • Maple
    A:= proc(n) add(d^4, d=convert(n, base, 10)) ; end proc: for n from 1 to 200000 do:if irem( n,A(n))=0 then printf(`%d, `,n):else fi:od:
  • Mathematica
    Select[Range[15000], Divisible[#, Plus @@ (IntegerDigits[#]^4)] &] (* Amiram Eldar, Jan 31 2021 *)

Formula

Numbers k such that A055013(k) | k.

A169666 Numbers divisible by the sum of 5th powers of their digits.

Original entry on oeis.org

1, 10, 100, 110, 111, 1000, 1010, 1011, 1100, 1101, 1110, 1122, 1232, 2112, 2210, 4100, 4150, 4151, 4224, 10000, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11022, 11100, 11122, 11220, 12012, 12110, 12210, 12320, 14550, 20000, 21120, 21321, 22100
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2010

Keywords

Examples

			21321 is a term since 2^5 + 1^5 + 3^5 + 2^5 + 1^5 = 309 and 21321 = 69*309.
54748 is a term since 5^5 + 4^5 + 7^5 + 4^5 + 8^5 = 54748.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 200000 do:l:=evalf(floor(ilog10(n))+1): n0:=n:indic:=0:s5:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s5:=s5+u^5: od:if irem(n,s5)=0 then print (n):else fi:od:
  • Mathematica
    Select[Range[10^4], Divisible[#, Plus @@ (IntegerDigits[#]^5)] &] (* Amiram Eldar, Jan 31 2021 *)
  • PARI
    is_A169666(n)=!(n%sum(i=1,#n=Vecsmall(Str(n)),(n[i]-48)^5))

Formula

A055014(a(n)) | a(n).

Extensions

Corrected and edited by D. S. McNeil, Nov 20 2010
More terms from Amiram Eldar, Jan 31 2021

A379980 Numbers that are divisible by the square of the sum of the squares of their digits.

Original entry on oeis.org

1, 10, 100, 1000, 1100, 1200, 1300, 2000, 2023, 2100, 2400, 3100, 4332, 5000, 10000, 10100, 10200, 10300, 11000, 12000, 13000, 20000, 20100, 20230, 20400, 21000, 24000, 30100, 30324, 31000, 31311, 42000, 43011, 43320, 50000, 52022, 52215, 55000, 71824, 100000
Offset: 1

Views

Author

Amiram Eldar, Jan 07 2025

Keywords

Comments

Called "Second-order Harshad numbers" by Pal and Gopalan (2023).
If k is a term, then 10*k is also a term.

Examples

			10 is a term since 10 is divisible by (1^2 + 0^2)^2 = 1.
1100 is a term since 1100 is divisible by (1^2 + 1^2 + 0^2 + 0^2)^2 = 4.
		

Crossrefs

Cf. A003132, A005349, A072081, A180490 (binary analog).
Subsequence of A034087.
Subsequences: A379981, A379982.

Programs

  • Mathematica
    Select[Range[10^5], Divisible[#, (Plus @@ (IntegerDigits[#]^2))^2] &]
  • PARI
    isok(k) = !(k % vecsum(apply(x -> x^2, digits(k)))^2);
    
  • Python
    def ok(n): return n and n%sum(di**2 for di in map(int, str(n)))**2 == 0
    print([k for k in range(100001) if ok(k)]) # Michael S. Branicky, Jan 10 2025

A007603 Power-sum numbers: let n = a_1 a_2 ... a_k be a k-digit number; n is a power-sum number if there are exponents e_1 ... e_m such that n = Sum_{i=1..m} Sum_{j=1..k} a_j^e_i.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 23, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 104, 108, 110, 111, 112, 113, 114, 115, 116, 117, 120, 122, 126, 130, 131, 132, 133, 134, 135, 136, 140, 144, 150, 151, 152, 153, 154, 156, 160, 162, 170, 171, 172, 173, 174, 178, 180, 182
Offset: 1

Views

Author

Keywords

Examples

			21 = (2+1)+(2^3+1^3)+(2^3+1^3), with e_1, e_2, e_3 = 1, 3, 3.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{d = IntegerDigits[n], v = {}, k = 1, s, ans = False}, If[Max[d] == 1, ans = Divisible[n, Total[d]], While[(s = Total[d^k]) <= n, AppendTo[v, s]; If[Length[IntegerPartitions[n, All, v]] > 0, ans = True; Break[]]; k++]]; ans]; Select[Range[200], q] (* Amiram Eldar, Sep 04 2021 *)

Extensions

Corrected and extended by Naohiro Nomoto, Mar 11 2001

A169662 Numbers divisible by the sum of their digits, and by the sum of their digits squared, by the sum of their digits cubed and by the sum of 4th powers of their digits.

Original entry on oeis.org

1, 10, 100, 110, 111, 1000, 1010, 1011, 1100, 1101, 1110, 2000, 5000, 10000, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11100, 20000, 50000, 55000, 100000, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101100
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2010

Keywords

Comments

The numbers such that all digits are nonzero are rare (see the subsequence A176194).

Examples

			1121211 is a term since 1^4 + 1^4 + 2^4 + 1^4 + 2^4 + 1^4 + 1^4 = 37 and 1121211 = 37*30303 ; 1^3 + 1^3 + 2^3 + 1^3 + 2^3 + 1^3 + 1^3 = 21 and 1121211 = 21*53391 ; 1^2 + 1^2 + 2^2 + 1^2 + 2^2 + 1^2 + 1^2 = 13 and 1121211 = 13* 86247 ; 1 + 1 + 2 + 1 + 2 + 1 + 1 = 9 and 1121211 = 9*124579.
		

Crossrefs

Intersection of A005349, A034087, A034088 and A169665.

Programs

  • Maple
    isA169662 := proc(n)
            dgs := convert(n,base,10) ;
            if (n mod ( add(d,d=dgs) ) = 0)  and (n mod (add(d^2,d=dgs) )) =0 and (n mod (add(d^3,d=dgs))) =0 and (n mod (add(d^4,d=dgs))) = 0 then
                    true;
            else
                    false;
            end if;
    end proc:
    for i from 1 to 110000 do
            if isA169662(i) then
                    printf("%d,",i) ;
            end if;
    end do: # R. J. Mathar, Nov 07 2011
  • Mathematica
    q[n_] := And @@ Divisible[n, Plus @@@ Transpose @ Map[#^Range[4] &, IntegerDigits[n]]]; Select[Range[10^5], q] (* Amiram Eldar, Jan 31 2021 *)

Formula

{n : A007953(n)|n and A003132(n)|n and A055012(n)| n and A055013(n)| n}.

A176194 Numbers with no zero digits divisible by the sum of the k-th powers of their digits, for each k = 1,2,3,4.

Original entry on oeis.org

1, 111, 1121211, 11243232, 12132432, 12413232, 22331232, 23111352, 23411232, 24113232, 41223312, 42131232, 44662464, 111111111, 112452144, 114251424, 135964224, 211412544, 246134592, 313212312, 332131212, 382941675, 416283624, 442114512, 523173456, 671635575, 979652772
Offset: 1

Views

Author

Michel Lagneau, Apr 11 2010

Keywords

Comments

For the numbers divisible by the sum of k-th powers of digits including 0, see A169662. The numbers such that the digits are > 0 are rare.

Examples

			For n = 246134592 we obtain :
2^4 + 4^4 + 6^4 + 1^4 + 3^4 + 4^4 + 5^4 + 9^4 + 2^4 = 9108, and 246134592 = 9108*27024 ;
2^3 + 4^3 + 6^3 + 1^3 + 3^3 + 4^3 + 5^3 + 9^3 + 2^3 = 1242, and 246134592 = 1242*198176 ;
2^2 + 4^2 + 6^2 + 1^2 + 3^2 + 4^2 + 5^2 + 9^2 + 2^2 = 192, and 246134592 = 192*1281951 ;
2 + 4 + 6 + 1 + 3 + 4 + 5 + 9 + 2 = 36, and 246134592 = 36*6837072.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 2 to 500000000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:s3:=0:s4:=0:p:=1:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:p:=p*u:s2:=s2+u^2:s3:=s3+u^3:s4:=s4+u^4: od:if irem(n,s1)=0 and irem(n,s2)=0 and irem(n,s3)=0 and irem(n,s4)=0 and p<>0 then print(n):else fi:od:

Formula

A007953 (n)|n and A003132(n)|n and A055012 (n)| n and A055013 (n)| n and all digits < > 0.

Extensions

a(1)-a(2) and more terms add by Amiram Eldar, Apr 20 2023

A169663 Numbers k divisible by the sum of the digits and the sum of the squares of digits of k (in base 10).

Original entry on oeis.org

1, 10, 20, 50, 100, 110, 111, 120, 133, 200, 210, 240, 315, 360, 372, 400, 420, 480, 500, 550, 630, 803, 1000, 1010, 1011, 1020, 1071, 1100, 1101, 1110, 1134, 1148, 1200, 1300, 1302, 1330, 1344, 1431, 1547, 2000, 2010, 2023, 2040, 2100, 2196, 2200, 2220
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2010

Keywords

Examples

			For k = 2196, 2^2 + 1^2 + 9^2 + 6^2 = 122, 2 + 1 + 9 + 6 = 18, and 2196 = 18*122 so it is divisible by both 18 and 122.
		

Crossrefs

Intersection of A005349 and A034087.

Programs

  • Maple
    with(numtheory):for n from 1 to 1000000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:s2:=s2+u^2:od:if irem(n,s1)=0 and irem(n,s2)=0 then print(n):else fi:od:
  • Mathematica
    Select[Range[2220], Divisible[#, Plus @@ (d = IntegerDigits[#])] && Divisible[#, Plus @@ (d^2)] &] (* Amiram Eldar, Mar 04 2023 *)
  • PARI
    sd2(n) = my(d=digits(n)); sum(i=1, #d, d[i]^2);
    isok(n) = !(n % sumdigits(n)) && !(n % sd2(n)); \\ Michel Marcus, Dec 21 2014

Formula

A007953(k)|k and A003132(k)|k.

A169664 Numbers k divisible respectively by the sum of digits, the sum of the squares and the sum of the cubes of digits in base 10 of k.

Original entry on oeis.org

1, 10, 100, 110, 111, 200, 500, 1000, 1010, 1011, 1100, 1101, 1110, 2000, 2352, 5000, 5500, 10000, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11100, 11112, 20000, 22000, 22200, 23520, 25032, 25110, 30100, 40000, 41013, 44160, 50000
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2010

Keywords

Examples

			For k = 174192, 1^3 + 7^3 + 4^3 + 1^3 + 9^3 + 2^3 = 1146, and 174192 = 152*1146; 1^2 + 7^2 + 4^2 + 1^2 + 9^2 + 2^2 = 152, and 174192 = 152*1146; 1 + 7 + 4 + 1 + 9 + 2 = 24, and 174192 = 24*7258.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 200000 do:l:=evalf(floor(ilog10(n))+1) : n0:=n:s1:=0:s2:=0: s3:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:s2:=s2+u^2:s3:=s3+u^3:od:if irem(n,s1)=0 and irem(n,s2)=0 and irem(n,s3)=0 then print(n):else fi:od:
  • Mathematica
    dsQ[n_]:=Module[{idn=IntegerDigits[n]}, Divisible[n,Total[idn]] && Divisible[n,Total[idn^2]] && Divisible[n,Total[idn^3]]]; Select[Range[50000],dsQ]  (* Harvey P. Dale, Feb 24 2011 *)

Formula

A007953(k)|k and A003132(k)|k and A055012(k)| k.
Showing 1-10 of 11 results. Next