A034095
Indices of (-1)sigma perfect numbers.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3
Offset: 1
-
f[p_, e_] := (p^(e+1)-2*p+1)/(p-1); r[1] = 1; r[n_] := (Times @@ f @@@ FactorInteger[n])/n; Select[r /@ Range[10^5], IntegerQ] (* Amiram Eldar, Jul 07 2022 *)
a(1)=1 prepended and offset corrected by
Michel Marcus, Jun 02 2016
a(10) and a(11) switched and missing term a(13) inserted by
Amiram Eldar, Jul 07 2022
A051152
(-1)sigma sociable number of order 2: (-1)sigma((-1)sigma(x))=x, but (-1)sigma(x)<>x, where if x=Product p(i)^r(i) then (-1)sigma(x)=Product (-1+Sum p(i)^s(i), s(i)=1 to r(i)); (-1)sigma(1)=1.
Original entry on oeis.org
4, 5, 216, 494, 16800, 21228, 246400, 440220
Offset: 0
-
A049060(n)={ local(i,resul,rmax,p) ; if(n==1, return(1) ) ; i=factor(n) ; rmax=matsize(i)[1] ; resul=1 ; for(r=1,rmax, p=0 ; for(j=1,i[r,2], p += i[r,1]^j ; ) ; resul *= p-1 ; ) ; return(resul) ; }
isA051152(r)={ local(s,t) ; s=A049060(r) ; t=A049060(s) ; if( r == t && s !=r, return(1), return(0) ) ; }
{ for(n=1,30000000, if( isA051152(n), print(n," ") ) ; ) ; } \\ R. J. Mathar, Oct 12 2006
A051153
(-1)-sigma super perfect numbers: (-1)sigma((-1)sigma(x))=2*x, where if x=Product p(i)^r(i) then (-1)sigma(x)=Product (-1+Sum p(i)^s(i), s(i)=1 to r(i)); (-1)sigma(1)=1.
Original entry on oeis.org
247, 988, 2808, 10440, 87696, 151200, 191052, 263520, 2630320, 3961980
Offset: 1
-
A049060(n)={ local(i,resul,rmax,p) ; if(n==1, return(1) ) ; i=factor(n) ; rmax=matsize(i)[1] ; resul=1 ; for(r=1,rmax, p=0 ; for(j=1,i[r,2], p += i[r,1]^j ; ) ; resul *= p-1 ; ) ; return(resul) ; } isA051153(r)={ local(s,t) ; s=A049060(r) ; t=A049060(s) ; if( 2*r == t, return(1), return(0) ) ; } { for(n=1,30000000, if( isA051153(n), print(n,",") ) ; ) ; } \\ R. J. Mathar, Oct 12 2006
Showing 1-3 of 3 results.
Comments