cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A034094 (-1)sigma perfect numbers: (-1)sigma(a) = m*a for some integer m, where if a = Product p(i)^r(i) then (-1)sigma(a) = Product_{i} (-1 + Sum_{s=1..r(i)} p(i)^s).

Original entry on oeis.org

1, 20, 312, 9744, 29280, 53352, 1666224, 5006880, 106798080, 133301760, 980733600, 9099742080, 18262471680, 22794600960, 1556055895680, 3577201689600, 4464942451200, 380428773854896765462278360268800000
Offset: 1

Views

Author

Keywords

Comments

The indices of some terms are 1, so these numbers are fixed points of (-1)sigma where (-1)sigma is A049060.

Examples

			Factorizations 2^2*5, 2^3*3*13, 2^4*3*7*29, 2^5*3*5*61, 2^3*3^3*13*19, 2^4*3^3*7*19*29, 2^5*3^3*5*19*61, 2^10*3*5*17*409, 2^9*3*5*17*1021, 2^5*3^2*5^2*7*11*29*61, 2^7*3*5*11^2*13*23*131, 2^10*3^3*5*17*19*409, 2^9*3^3*5*17*19*1021, 2^7*3^3*5*11^2*13*19*23*131, 2^10*3^2*5^2*7*11*17*29*409, 2^9*3^2*5^2*7*11*17*29*1021, 2^24*3^3*5^5*7^2*11*17*19*29*61*233*239*467*479*70051.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-2*p+1)/(p-1); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^5], Divisible[s[#], #] &] (* Amiram Eldar, Jul 07 2022 *)
  • PARI
    msig(n) = {f = factor(n); for (i=1, #f~, f[i, 1] = (f[i,1]^(f[i,2]+1)-2*f[i,1]+1)/(f[i,1]-1); f[i, 2] = 1;); factorback(f);}
    isok(n) = denominator(msig(n)/n) == 1; \\ Michel Marcus, Jun 02 2016

Extensions

a(1)=1 prepended by Michel Marcus, Jun 02 2016
a(10) and a(11) switched and missing term a(13) inserted by Amiram Eldar, Jul 07 2022
Showing 1-1 of 1 results.