cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034176 One third of quartic factorial numbers.

Original entry on oeis.org

1, 7, 77, 1155, 21945, 504735, 13627845, 422463195, 14786211825, 576662261175, 24796477230525, 1165434429834675, 59437155921568425, 3269043575686263375, 192873570965489539125, 12151034970825840964875, 814119343045331344646625, 57802473356218525469910375
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    a:=[1];; for n in [2..20] do a[n]:=(4*n-1)*a[n-1]; od; a; # G. C. Greubel, Aug 15 2019
  • Magma
    [n le 1 select 1 else (4*n-1)*Self(n-1): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    A034176:=n->`if`(n=1, 1, (4*n-1)*A034176(n-1)); seq(A034176(n), n=1..20); # G. C. Greubel, Aug 15 2019
  • Mathematica
    Table[4^n*Pochhammer[3/4, n]/3, {n, 20}] (* G. C. Greubel, Aug 15 2019 *)
  • PARI
    m=20; v=concat([1], vector(m-1)); for(n=2, m, v[n]=(4*n-1)*v[n-1]); v \\ G. C. Greubel, Aug 15 2019
    
  • Sage
    [4^n*rising_factorial(3/4, n)/3 for n in (1..20)] # G. C. Greubel, Aug 15 2019
    

Formula

3*a(n) = (4*n-1)(!^4) := Product_{j=1..n} 4*j-1 = (4*n-1)!!/A007696(n) = (4*n)!/(4^n*(2*n)!*A007696(n)), A007696(n)=(4*n-3)(!^4), n >= 1;
E.g.f.: (-1 + (1-4*x)^(-3/4))/3.
a(n) ~ 4/3 * 2^(1/2) * Pi^(1/2) * Gamma(3/4)^(-1) * n^(5/4) * 2^(2*n) * e^(-n) * n^n * {1 + 71/96*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
G.f.: 1/Q(0) where Q(k) = 1 - x + 2*(2*k-1)*x - 4*x*(k+1) / Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
D-finite with recurrence: a(n) + (-4*n+1) * a(n-1) = 0. - R. J. Mathar, Feb 24 2020
Sum_{n>=1} 1/a(n) = 3*exp(1/4)*(Gamma(3/4) - Gamma(3/4, 1/4)) / sqrt(2). - Amiram Eldar, Dec 18 2022
a(n) = 4^(n-1) * Gamma(n + 3/4) / Gamma(7/4). - Peter McNair, May 06 2024