A034182 Number of not-necessarily-symmetric n X 2 crossword puzzle grids.
1, 5, 15, 39, 97, 237, 575, 1391, 3361, 8117, 19599, 47319, 114241, 275805, 665855, 1607519, 3880897, 9369317, 22619535, 54608391, 131836321, 318281037, 768398399, 1855077839, 4478554081, 10812186005, 26102926095, 63018038199, 152139002497, 367296043197
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Louis Marin, Counting Polyominoes in a Rectangle b X h, arXiv:2406.16413 [cs.DM], 2024. See p. 145.
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1)
Crossrefs
Programs
-
Haskell
a034182 n = a034182_list !! (n-1) a034182_list = 1 : 5 : (map (+ 4) $ zipWith (+) a034182_list (map (* 2) $ tail a034182_list)) -- Reinhard Zumkeller, May 23 2013
-
Mathematica
{1}~Join~NestList[{#2, 2 #2 + #1 + 4} & @@ # &, {1, 5}, 28][[All, -1]] (* Michael De Vlieger, Oct 02 2017 *)
Formula
a(n) = 2a(n-1) + a(n-2) + 4.
(1 + 5x + 15x^2 + ...) = (1 + 2x + 2x^2 + ...) * (1 + 3x + 7x^2 + ...), convolution of A040000 and left-shifted A001333.
a(n) = (-4 + (1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n))/2. G.f.: x*(1+x)^2/((1-x)*(1 - 2*x - x^2)). - Colin Barker, May 22 2012
a(n) = A001333(n+1)-2. - R. J. Mathar, Mar 28 2013
Comments