cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034190 Number of binary codes of length 5 with n words.

Original entry on oeis.org

1, 1, 5, 10, 47, 131, 472, 1326, 3779, 9013, 19963, 38073, 65664, 98804, 133576, 158658, 169112, 158658, 133576, 98804, 65664, 38073, 19963, 9013, 3779, 1326, 472, 131, 47, 10, 5, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Also number of 2-colorings of the vertices of the 5-cube having n nodes of one color.

References

  • W. Y. C. Chen, Induced cycle structures of the hyperoctahedral group. SIAM J. Disc. Math. 6 (1993), 353-362.
  • H. Fripertinger, Enumeration, construction and random generation of block codes, Designs, Codes, Crypt., 14 (1998), 213-219.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1979.

Crossrefs

Programs

  • Mathematica
    (* From Robert A. Russell, May 08 2007: (Start) *)
    P[ n_Integer ]:=P[ n ]=P[ n,n ];P[ n_Integer,_ ]:={}/;(n<0);(* partitions *)
    P[ 0, ]:={{}};P[ n_Integer,1 ]:={Table[ 1,{n} ]};P[ ,0 ]:={};(*S.S. Skiena*)
    P[ n_Integer,m_Integer ]:=Join[ Map[ (Prepend[ #,m ])&,P[ n-m,m ] ],P[ n,m-1 ] ];
    AC[ d_Integer ]:=Module[ {C,M,p}, (* from W.Y.C. Chen algorithm *)
    M[ p_List ]:=Plus@@p!/(Times@@p Times@@(Length/@Split[ p ]!));
    C[ p_List,q_List ]:=Module[ {r,m,k,x},r=If[ 0==Length[ q ],1,2 2^
    IntegerExponent[ LCM@@q,2 ] ];m=LCM@@Join[ p/GCD[ r,p ],q/GCD[ r,q ] ];
    CoefficientList[ Expand[ Product[ (1+x^(k r))^((Plus@@Map[ MoebiusMu[ k/# ]
    2^Plus@@GCD[# r,Join[ p,q ] ]&,Divisors[ k ] ])/(k r)),{k,1,m} ] ],x ] ];
    Sum[ Binomial[ d,p ]Plus@@Plus@@Outer[ M[ #1 ]M[ #2 ]C[ #1,#2 ]2^(d-Length[ #1 ]-Length[ #2 ])&,P[ p ],P[ d-p ],1 ],{p,0,d} ]/(d!2^d) ];AC[ 5 ]
    (* End *)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 11 2007