cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A034253 Triangle read by rows: T(n,k) = number of inequivalent linear [n,k] binary codes without 0 columns (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 6, 12, 11, 5, 1, 1, 7, 21, 27, 17, 6, 1, 1, 9, 34, 63, 54, 25, 7, 1, 1, 11, 54, 134, 163, 99, 35, 8, 1, 1, 13, 82, 276, 465, 385, 170, 47, 9, 1, 1, 15, 120, 544, 1283, 1472, 847, 277, 61, 10, 1, 1, 18, 174, 1048, 3480
Offset: 1

Views

Author

Keywords

Comments

"A linear (n, k)-code has columns of zeros, if and only if there is some i ∈ n such that x_i = 0 for all codewords x, and so we should exclude such columns." [Fripertinger and Kerber (1995, p. 196)] - Petros Hadjicostas, Sep 30 2019

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  1;
  1   1;
  1   2   1;
  1   3   3    1;
  1   4   6    4    1;
  1   6  12   11    5   1;
  1,  7, 21,  27,  17,  6,  1;
  1,  9, 34,  63,  54, 25,  7, 1;
  1, 11, 54, 134, 163, 99, 35, 8, 1;
  ...
		

Crossrefs

Cf. A000012 (column k=1), A253186 (column k=2), A034344 (column k=3), A034345 (column k=4), A034346 (column k=5), A034347 (column k=6), A034348 (column k=7), A034349 (column k=8).
Cf. A034254.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 4 gives
    print(A034253col(4, 30)) # Petros Hadjicostas, Sep 30 2019

Formula

From Petros Hadjicostas, Sep 30 2019: (Start)
T(n,k=2) = floor(n/2) + floor((n^2 + 6)/12) = A253186(n).
T(n,k) = A076832(n,k) - A076832(n,k-1) for n, k >= 1, where we define A076832(n,0) := 0 for n >= 1.
G.f. for column k=2: (x^3 - x - 1)*x^2/((x^2 + x + 1)*(x + 1)*(x - 1)^3).
G.f. for column k=3: (x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^7).
G.f. for column k >= 4: modify the Sage program below (cf. function f). It is too complicated to write it here. See also some of the links above.
(End)

A034356 Triangle read by rows giving T(n,k) = number of inequivalent linear [n,k] binary codes (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 6, 16, 22, 16, 6, 1, 7, 23, 43, 43, 23, 7, 1, 8, 32, 77, 106, 77, 32, 8, 1, 9, 43, 131, 240, 240, 131, 43, 9, 1, 10, 56, 213, 516, 705, 516, 213, 56, 10, 1, 11, 71, 333, 1060, 1988, 1988, 1060, 333, 71, 11, 1, 12, 89
Offset: 1

Views

Author

Keywords

Examples

			Table T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  1;
  2,  1;
  3,  3,  1;
  4,  6,  4,   1;
  5, 10, 10,   5,  1;
  6, 16, 22,  16,  6,  1;
  7, 23, 43,  43, 23,  7, 1;
  8, 32, 77, 106, 77, 32, 8, 1;
  ...
		

Crossrefs

This is A076831 with the k=0 column omitted.
Columns include A000027 (k=1), A034198 (k=2), A034357 (k=3), A034358 (k=4), A034359 (k=5), A034360 (k=6), A034361 (k=7), A034362 (k=8).

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
    def A034356col(k, length):
        R = PowerSeriesRing(ZZ, 'x', default_prec=length)
        x = R.gen().O(length)
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = (f1 - f2)/(1-x)
        return f.list()
    # For instance the Taylor expansion for column k = 4 gives
    print(A034356col(4, 30)) # Petros Hadjicostas, Oct 07 2019

Formula

From Petros Hadjicostas, Sep 30 2019: (Start)
T(n,k) = Sum_{i = k..n} A034253(i,k) for 1 <= k <= n.
G.f. for column k=1: x/(1-x)^2.
G.f. for column k=2: -(x^3 - x - 1)*x^2/((x^2 + x + 1)*(x + 1)*(x - 1)^4).
G.f. for column k=3: -(x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^8).
G.f. for column k >= 4: modify the Sage program below (cf. function f). It is too complicated to write it here. For some cases, see also the links above.
(End)

A034344 Number of binary [ n,3 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 21, 34, 54, 82, 120, 174, 244, 337, 458, 613, 808, 1056, 1361, 1738, 2200, 2759, 3431, 4240, 5198, 6333, 7670, 9235, 11056, 13175, 15618, 18432, 21660, 25347, 29543, 34312, 39702, 45786, 52633, 60315, 68910, 78515, 89206, 101092, 114276, 128866, 144978, 162750, 182298
Offset: 1

Views

Author

Keywords

Comments

The g.f. function below was calculated in Sage (using Fripertinger's method) and compared with the one in Lisonek's (2007) Example 5.3 (p. 627). - Petros Hadjicostas, Oct 02 2019

Crossrefs

Column k=3 of A034253.
First differences of A034357.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 3 (this sequence) gives
    print(A034253col(3, 30)) # Petros Hadjicostas, Oct 02 2019

Formula

G.f.: (x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^7) = (-x^15 + 2*x^14 - x^13 + x^12 + x^9 - x^7 + x^4 + x^3)/((1 - x)^2*(-x^2 + 1)*(-x^3 + 1)^2*(-x^4 + 1)*(-x^7 + 1)). - Petros Hadjicostas, Oct 02 2019

Extensions

More terms from Petros Hadjicostas, Oct 02 2019

A034363 Triangle of number of linear [ n,k ] ternary codes (n >= 1, k >= 1) without 0 columns.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 8, 4, 1, 1, 8, 19, 15, 5, 1, 1, 10, 39, 50, 24, 6, 1, 1, 14, 78, 168, 118, 37, 7, 1
Offset: 1

Views

Author

Keywords

References

  • H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.

Crossrefs

A034374 Triangle of number of indecomposable projective linear [ n,k ] GF(5) codes (n >= 1, k >= 1) without 0 columns.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 10, 7, 1, 0, 0, 21, 46, 10, 1, 0, 0, 42, 436, 193, 17, 1
Offset: 1

Views

Author

Keywords

References

  • H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.

Crossrefs

A034345 Number of binary [ n,4 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 0, 1, 4, 11, 27, 63, 134, 276, 544, 1048, 1956, 3577, 6395, 11217, 19307, 32685, 54413, 89225, 144144, 229647, 360975, 560259, 858967, 1301757, 1950955, 2893102, 4246868, 6174084, 8892966, 12696295, 17973092, 25237467, 35163431, 48629902, 66774760, 91063984
Offset: 1

Views

Author

Keywords

Comments

"We say that the sequence (a_n) is quasi-polynomial in n if there exist polynomials P_0, ..., P_{s-1} and an integer n_0 such that, for all n >= n_0, a_n = P_i(n) where i == n (mod s)." [This is from the abstract of Lisonek (2007), and he states that the condition "n >= n_0" makes his definition broader than the one in Stanley's book. From Section 5 of his paper, we conclude that (a(n): n >= 1) is a quasi-polynomial in n.] - Petros Hadjicostas, Oct 02 2019

Crossrefs

Column k=4 of A034253 and first differences of A034358.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 4 (this sequence) gives
    print(A034253col(4, 30)) #

Extensions

More terms by Petros Hadjicostas, Oct 02 2019

A034346 Number of binary [ n,5 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 17, 54, 163, 465, 1283, 3480, 9256, 24282, 62812, 160106, 401824, 992033, 2406329, 5730955, 13393760, 30709772, 69079030, 152473837, 330344629, 702839150, 1469214076, 3019246455, 6103105779, 12142291541, 23790590387, 45932253637, 87434850942, 164188881007
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=5 of A034253 and first differences of A034359.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 5 gives a(n):
    print(A034253col(5, 30)) # Petros Hadjicostas, Oct 04 2019

Extensions

More terms from Petros Hadjicostas, Oct 04 2019

A034347 Number of binary [ n,6 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 6, 25, 99, 385, 1472, 5676, 22101, 87404, 350097, 1413251, 5708158, 22903161, 90699398, 352749035, 1342638839, 4990325414, 18090636016, 63933709870, 220277491298, 740170023052, 2426954735273, 7770739437179, 24314436451415, 74406425640743, 222867051758565, 653898059035166
Offset: 1

Views

Author

Keywords

Crossrefs

First differences of A034360.
Column k = 6 of A034253.

Programs

  • SageMath
    # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 6 (this sequence) gives
    print(A034253col(6, 30)) # Petros Hadjicostas, Oct 05 2019

Extensions

More terms from Petros Hadjicostas, Oct 05 2019

A034348 Number of binary [ n,7 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 7, 35, 170, 847, 4408, 24297, 143270, 901491, 5985278, 41175203, 287813284, 2009864185, 13848061942, 93369988436, 613030637339, 3908996099141, 24179747870890, 145056691643428, 844229016035010, 4769751989333029, 26181645303024760, 139750488576152520
Offset: 1

Views

Author

Keywords

Comments

To find the g.f., modify the Sage program below (cf. function f). It is very complicated to write it here. - Petros Hadjicostas, Oct 05 2019

Crossrefs

Column k=7 of A034253 and first differences of A034361.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 7 (this sequence) gives
    print(A034253col(7, 30)) #

Extensions

More terms from Petros Hadjicostas, Oct 05 2019

A034349 Number of binary [ n,8 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 8, 47, 277, 1775, 12616, 102445, 957357, 10174566, 119235347, 1482297912, 18884450721, 240477821389, 3012879828566, 36800049400028, 436068618826236, 5001537857507095, 55482177298724426, 595303034603214108, 6181562837200509792, 62170512250565592346
Offset: 1

Views

Author

Keywords

Comments

To find the g.f., modify the Sage program below (cf. function f). It is very complicated to write it here. - Petros Hadjicostas, Oct 07 2019

Crossrefs

Column k=8 of A034253 and first differences of A034362.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 8 (current sequence) gives
    print(A034253col(8, 30)) # Petros Hadjicostas, Oct 07 2019

Extensions

More terms from Petros Hadjicostas, Oct 07 2019
Showing 1-10 of 33 results. Next