cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A034254 Triangle read by rows giving T(n,k) = number of inequivalent indecomposable linear [ n,k ] binary codes without 0 columns (n >= 2, 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 4, 10, 10, 4, 1, 1, 5, 18, 28, 18, 5, 1, 1, 7, 31, 71, 71, 31, 7, 1, 1, 8, 51, 165, 250, 165, 51, 8, 1, 1, 10, 79, 361, 809, 809, 361, 79, 10, 1, 1, 12, 121, 754, 2484, 3759, 2484, 754, 121, 12, 1, 1, 14, 177, 1503, 7240, 16749, 16749, 7240, 1503, 177, 14, 1
Offset: 1

Views

Author

Keywords

Comments

Fripertinger and Kerber (1995) mention that Slepian (1960) gave a generating function scheme for computing R_{n,k,2} = T(n,k), but it is not always correct. In Theorem 3.1, they give a corrected formula, but it seems too difficult to implement it in Sage. They do provide, however, a SYMMETRICA program for its computation (see the links). - Petros Hadjicostas, Oct 07 2019

Examples

			Triangle T(n,k) (with rows n >= 2 and columns k >= 1) begins as follows:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,   1;
  1, 3,  5,   3,   1;
  1, 4, 10,  10,   4,   1;
  1, 5, 18,  28,  18,   5,  1;
  1, 7, 31,  71,  71,  31,  7, 1;
  1, 8, 51, 165, 250, 165, 51, 8, 1;
  ...
		

Crossrefs

Cf. A076836 (row sums), A034253.
Columns include A000012 (k=1), A069905 (k=2), A034350 (k=3), A034351 (k=4), A034352 (k=5), A034353 (k=6), A034354 (k=7), A034355 (k=8).

Extensions

More terms from Petros Hadjicostas, Oct 07 2019

A191646 Triangle read by rows: T(n,k) = number of connected multigraphs with n >= 0 edges and 1 <= k <= n+1 vertices, with no loops allowed.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 11, 11, 6, 0, 1, 6, 22, 34, 29, 11, 0, 1, 7, 37, 85, 110, 70, 23, 0, 1, 9, 61, 193, 348, 339, 185, 47, 0, 1, 11, 95, 396, 969, 1318, 1067, 479, 106, 0, 1, 13, 141, 771, 2445, 4457, 4940, 3294, 1279, 235
Offset: 0

Views

Author

Alberto Tacchella, Jul 04 2011

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 2,  2;
  0, 1, 3,  5,  3;
  0, 1, 4, 11, 11,  6;
  0, 1, 6, 22, 34, 29, 11;
  ...
		

Crossrefs

Row sums give A076864. Diagonal is A000055.
Cf. A034253, A054923, A192517, A253186 (column k=3), A290778 (column k=4).

Programs

  • PARI
    EulerT(v)={my(p=exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1); Vec(p/x,-#v)}
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v,x)={sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(v[i]*v[j]/g))) + sum(i=1, #v, my(t=v[i]); ((t-1)\2)*x^t + if(t%2,0,x^(t/2)))}
    G(n,m)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(edges(p,x) + O(x*x^m), -m))); s/n!}
    R(n)={Mat(apply(p->Col(p+O(y^n),-n), InvEulerMT(vector(n, k, 1 + y*Ser(G(k,n-1), y)))))}
    { my(A=R(10)); for(n=1, #A, for(k=1, n, print1(A[n,k], ", "));print) } \\ Andrew Howroyd, May 14 2018

Formula

T(n,k=3) = A253186(n) = A034253(n,k=2) for n >= 1. - Petros Hadjicostas, Oct 02 2019

A034356 Triangle read by rows giving T(n,k) = number of inequivalent linear [n,k] binary codes (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 6, 16, 22, 16, 6, 1, 7, 23, 43, 43, 23, 7, 1, 8, 32, 77, 106, 77, 32, 8, 1, 9, 43, 131, 240, 240, 131, 43, 9, 1, 10, 56, 213, 516, 705, 516, 213, 56, 10, 1, 11, 71, 333, 1060, 1988, 1988, 1060, 333, 71, 11, 1, 12, 89
Offset: 1

Views

Author

Keywords

Examples

			Table T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  1;
  2,  1;
  3,  3,  1;
  4,  6,  4,   1;
  5, 10, 10,   5,  1;
  6, 16, 22,  16,  6,  1;
  7, 23, 43,  43, 23,  7, 1;
  8, 32, 77, 106, 77, 32, 8, 1;
  ...
		

Crossrefs

This is A076831 with the k=0 column omitted.
Columns include A000027 (k=1), A034198 (k=2), A034357 (k=3), A034358 (k=4), A034359 (k=5), A034360 (k=6), A034361 (k=7), A034362 (k=8).

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
    def A034356col(k, length):
        R = PowerSeriesRing(ZZ, 'x', default_prec=length)
        x = R.gen().O(length)
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = (f1 - f2)/(1-x)
        return f.list()
    # For instance the Taylor expansion for column k = 4 gives
    print(A034356col(4, 30)) # Petros Hadjicostas, Oct 07 2019

Formula

From Petros Hadjicostas, Sep 30 2019: (Start)
T(n,k) = Sum_{i = k..n} A034253(i,k) for 1 <= k <= n.
G.f. for column k=1: x/(1-x)^2.
G.f. for column k=2: -(x^3 - x - 1)*x^2/((x^2 + x + 1)*(x + 1)*(x - 1)^4).
G.f. for column k=3: -(x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^8).
G.f. for column k >= 4: modify the Sage program below (cf. function f). It is too complicated to write it here. For some cases, see also the links above.
(End)

A253186 Number of connected unlabeled loopless multigraphs with 3 vertices and n edges.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 6, 7, 9, 11, 13, 15, 18, 20, 23, 26, 29, 32, 36, 39, 43, 47, 51, 55, 60, 64, 69, 74, 79, 84, 90, 95, 101, 107, 113, 119, 126, 132, 139, 146, 153, 160, 168, 175, 183, 191, 199, 207, 216, 224, 233, 242, 251, 260, 270, 279, 289, 299, 309, 319, 330
Offset: 0

Views

Author

Danny Rorabaugh, Mar 23 2015

Keywords

Comments

a(n) is also the number of ways to partition n into 2 or 3 parts.
a(n) is also the dimension of linear space of three-dimensional 2n-homogeneous polynomial vector fields, which have an octahedral symmetry (for a given representation), which are solenoidal, and which are vector fields on spheres. - Giedrius Alkauskas, Sep 30 2017
Apparently a(n) = A244239(n-6) for n > 4. - Georg Fischer, Oct 09 2018
a(n) is also the number of loopless connected n-regular multigraphs with 4 nodes. - Natan Arie Consigli, Aug 09 2019
a(n) is also the number of inequivalent linear [n, k=2] binary codes without 0 columns (see A034253 for more details). - Petros Hadjicostas, Oct 02 2019
Differs from A160138 only by the offset. - R. J. Mathar, May 15 2023
From Allan Bickle, Jul 13 2025: (Start)
a(n) is the number of theta graphs with n-2 vertices, or n-1 edges. Equivalently, the number of 2-connected graphs with n-2 vertices and n-1 edges.
A theta graph has three paths with length at least 1 identified at their endpoints. There can at most one path with length 1.
For instance the theta graphs with 6 vertices have paths with lengths (1,2,4), (1,3,3), or (2,2,2), so a(6-2) = 3. (End)

Examples

			On vertex set {a, b, c}, every connected multigraph with n = 5 edges is isomorphic to a multigraph with one of the following a(5) = 4 edge multisets: {ab, ab, ab, ab, ac}, {ab, ab, ab, ac, ac}, {ab, ab, ab, ac, bc}, and {ab, ab, ac, ac, bc}.
		

Crossrefs

Column k = 3 of A191646 and column k = 2 of A034253.
First differences of A034198 (excepting the first term).
Cf. A213654, A213655, A213668 (theta graphs).

Programs

  • Magma
    [Floor(n/2) + Floor((n^2 + 6)/12): n in [0..70]]; // Vincenzo Librandi, Mar 24 2015
  • Mathematica
    CoefficientList[Series[- x^2 (x^3 - x - 1) / ((1 - x) (1 - x^2) (1 - x^3)), {x, 0, 70}], x] (* Vincenzo Librandi, Mar 24 2015 *)
    LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 1, 2, 3, 4}, 61] (* Robert G. Wilson v, Oct 11 2017 *)
    a[n_]:=Floor[n/2] + Floor[(n^2 + 6)/12]; Array[a, 70, 0] (* Stefano Spezia, Oct 09 2018 *)
  • Sage
    [floor(n/2) + floor((n^2 + 6)/12) for n in range(70)]
    

Formula

a(n) = A004526(n) + A069905(n).
a(n) = floor(n/2) + floor((n^2 + 6)/12).
G.f.: x^2*(x^3 - x - 1)/((x - 1)^2*(x^2 - 1)*(x^2 + x + 1)).

A076831 Triangle T(n,k) read by rows giving number of inequivalent binary linear [n,k] codes (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 16, 22, 16, 6, 1, 1, 7, 23, 43, 43, 23, 7, 1, 1, 8, 32, 77, 106, 77, 32, 8, 1, 1, 9, 43, 131, 240, 240, 131, 43, 9, 1, 1, 10, 56, 213, 516, 705, 516, 213, 56, 10, 1, 1, 11, 71, 333, 1060, 1988, 1988
Offset: 0

Views

Author

N. J. A. Sloane, Nov 21 2002

Keywords

Comments

"The familiar appearance of the first few rows [...] provides a good example of the perils of too hasty extrapolation in mathematics." - Slepian.
The difference between this triangle and the one for which it can be so easily mistaken is A250002. - Tilman Piesk, Nov 10 2014.

Examples

			     k    0   1   2   3    4    5    6    7    8   9  10  11        sum
   n
   0      1                                                           1
   1      1   1                                                       2
   2      1   2   1                                                   4
   3      1   3   3   1                                               8
   4      1   4   6   4    1                                         16
   5      1   5  10  10    5    1                                    32
   6      1   6  16  22   16    6    1                               68
   7      1   7  23  43   43   23    7    1                         148
   8      1   8  32  77  106   77   32    8    1                    342
   9      1   9  43 131  240  240  131   43    9   1                848
  10      1  10  56 213  516  705  516  213   56  10   1           2297
  11      1  11  71 333 1060 1988 1988 1060  333  71  11   1       6928
		

References

  • M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint No. 1693, Tech. Hochschule Darmstadt, 1994

Crossrefs

Cf. A006116, A022166, A076766 (row sums).
A034356 gives same table but with the k=0 column omitted.
Columns include A000012 (k=0), A000027 (k=1), A034198 (k=2), A034357 (k=3), A034358 (k=4), A034359 (k=5), A034360 (k=6), A034361 (k=7), A034362 (k=8).

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
    def A076831col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = (f1 - f2)/(1-x)
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 4 gives
    print(A076831col(4, 30)) # Petros Hadjicostas, Sep 30 2019

Formula

From Petros Hadjicostas, Sep 30 2019: (Start)
T(n,k) = Sum_{i = k..n} A034253(i,k) for 1 <= k <= n.
G.f. for column k=2: -(x^3 - x - 1)*x^2/((x^2 + x + 1)*(x + 1)*(x - 1)^4).
G.f. for column k=3: -(x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^8).
G.f. for column k >= 4: modify the Sage program below (cf. function f). It is too complicated to write it here. (See also some of the links above.)
(End)

A034344 Number of binary [ n,3 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 21, 34, 54, 82, 120, 174, 244, 337, 458, 613, 808, 1056, 1361, 1738, 2200, 2759, 3431, 4240, 5198, 6333, 7670, 9235, 11056, 13175, 15618, 18432, 21660, 25347, 29543, 34312, 39702, 45786, 52633, 60315, 68910, 78515, 89206, 101092, 114276, 128866, 144978, 162750, 182298
Offset: 1

Views

Author

Keywords

Comments

The g.f. function below was calculated in Sage (using Fripertinger's method) and compared with the one in Lisonek's (2007) Example 5.3 (p. 627). - Petros Hadjicostas, Oct 02 2019

Crossrefs

Column k=3 of A034253.
First differences of A034357.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 3 (this sequence) gives
    print(A034253col(3, 30)) # Petros Hadjicostas, Oct 02 2019

Formula

G.f.: (x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^7) = (-x^15 + 2*x^14 - x^13 + x^12 + x^9 - x^7 + x^4 + x^3)/((1 - x)^2*(-x^2 + 1)*(-x^3 + 1)^2*(-x^4 + 1)*(-x^7 + 1)). - Petros Hadjicostas, Oct 02 2019

Extensions

More terms from Petros Hadjicostas, Oct 02 2019

A034363 Triangle of number of linear [ n,k ] ternary codes (n >= 1, k >= 1) without 0 columns.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 8, 4, 1, 1, 8, 19, 15, 5, 1, 1, 10, 39, 50, 24, 6, 1, 1, 14, 78, 168, 118, 37, 7, 1
Offset: 1

Views

Author

Keywords

References

  • H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.

Crossrefs

A034374 Triangle of number of indecomposable projective linear [ n,k ] GF(5) codes (n >= 1, k >= 1) without 0 columns.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 10, 7, 1, 0, 0, 21, 46, 10, 1, 0, 0, 42, 436, 193, 17, 1
Offset: 1

Views

Author

Keywords

References

  • H. Fripertinger and A. Kerber, in AAECC-11, Lect. Notes Comp. Sci. 948 (1995), 194-204.

Crossrefs

A076832 Triangle T(n,k), read by rows, giving the total number of inequivalent binary linear [n,i] codes with no column of zeros, summed for i <= k (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 7, 8, 1, 5, 11, 15, 16, 1, 7, 19, 30, 35, 36, 1, 8, 29, 56, 73, 79, 80, 1, 10, 44, 107, 161, 186, 193, 194, 1, 12, 66, 200, 363, 462, 497, 505, 506, 1, 14, 96, 372, 837, 1222, 1392, 1439, 1448, 1449, 1, 16, 136, 680, 1963, 3435, 4282
Offset: 1

Views

Author

N. J. A. Sloane, Nov 21 2002

Keywords

Comments

From Petros Hadjicostas, Sep 30 2019: (Start)
It seems that Harald Fripertinger at his website defines T(n,k) = T(n,n) for k > n (and thus he gets an orthogonal array). It seems that T(n,n) = A034343(n).
It seems that T(n,k=2) = A001399(n) for n >= 2 (with A001399(n=1) = T(1,1)); T(n,k=3) = A034337(n) for n >= 3 (with A034337(n) = T(n,n) for 1 <= n <= 2); T(n,k=4) = A034338(n) for n >= 4 (with A034338(n) = T(n,n) for 1 <= n <= 3); and so on. See the Crossrefs below for more information.
To get the g.f. of column k (starting at n = 0 with T(n=0,k) := 1 rather than at n = k), modify the Sage program below (cf. function f).
(End)

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  1;
  1,  2;
  1,  3,  4;
  1,  4,  7,   8;
  1,  5, 11,  15,  16;
  1,  7, 19,  30,  35,  36;
  1,  8, 29,  56,  73,  79,  80;
  1, 10, 44, 107, 161, 186, 193, 194; ...
		

Crossrefs

Columns give truncated versions of A001399 (k = 2), A034337 (k = 3), A034338 (k = 4), A034339 (k = 5), A034340 (k = 6), A034341 (k = 7), A034342 (k = 8), and A034343 (? main diagonal).

Programs

  • Maple
    # We illustrate how to get a g.f. for column k in Maple when k is small.
    with(GroupTheory);
    G := ProjectiveGeneralLinearGroup(4, 2);
    GroupOrder(G);
    # We get that the order is 20160.
    f:=CycleIndexPolynomial(G, [x||(1..20160)]);
    # We get
    # 1/20160*x1^15 + 1/192*x1^7*x2^4 + 1/96*x1^3*x2^6 + 1/16*x1^3*x2^2*x4^2 +
    # 1/18*x1^3*x3^4 + 1/6*x1*x2*x3^2*x6 + 1/8*x1*x2*x4^3 + 1/180*x3^5 + 2/7*x1*x7^2 +
    # 1/12*x3*x6^2 + 1/15*x5^3 + 2/15*x15
    # The only dummy variables that appear are x1, x2, x3, x4, x5, x6, x7, and x15.
    g:=subs(x1 = 1/(1 - y), subs(x2 = 1/(-y^2 + 1), subs(x3 = 1/(-y^3 + 1), subs(x4 = 1/(-y^4 + 1), subs(x5 = 1/(-y^5 + 1), subs(x6 = 1/(-y^6 + 1), subs(x7 = 1/(-y^7 + 1), subs(x15 = 1/(-y^15 + 1), f))))))));
    # Then we take a Taylor expansion of the above g.f.
    taylor(g,y=0,50);
    # We get a Taylor expansion for column k = 4 (i.e., A034338).
    # Petros Hadjicostas, Sep 30 2019
  • Sage
    # Fripertinger's method to find the g.f. of column k for small k:
    def A076832col(k, length):
        G = PSL(k, GF(2))
        D = G.cycle_index()
        f = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D)
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 4 gives A034338:
    print(A076832col(4, 30)) # Petros Hadjicostas, Sep 30 2019

Extensions

Revised by N. J. A. Sloane, Mar 01 2004

A034337 Number of inequivalent binary [ n,3 ] codes of dimension <= 3 without zero columns.

Original entry on oeis.org

1, 2, 4, 7, 11, 19, 29, 44, 66, 96, 136, 193, 265, 361, 485, 643, 841, 1093, 1401, 1782, 2248, 2811, 3487, 4301, 5263, 6403, 7745, 9315, 11141, 13266, 15714, 18534, 21768, 25461, 29663, 34439, 39835, 45926, 52780, 60469, 69071, 78684, 89382, 101276, 114468, 129066, 145186, 162967, 182523
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=3 of A076832 (starting at n=3).
Cf. A034253.

Programs

  • SageMath
    def Tcol(k, length):
        G = PSL(k, GF(2))
        D = G.cycle_index()
        f = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D)
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 3 gives a(n):
    print(Tcol(3, 30)) # Petros Hadjicostas, Sep 30 2019

Formula

G.f.: -(x^10 - x^8 + x^6 + x^5 + x^4 - x^2 + 1)*(x^4 - x^3 + x^2 - x + 1)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^7). - Petros Hadjicostas, Sep 30 2019

Extensions

More terms by Petros Hadjicostas, Sep 30 2019
Showing 1-10 of 37 results. Next