A034254 Triangle read by rows giving T(n,k) = number of inequivalent indecomposable linear [ n,k ] binary codes without 0 columns (n >= 2, 1 <= k <= n).
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 4, 10, 10, 4, 1, 1, 5, 18, 28, 18, 5, 1, 1, 7, 31, 71, 71, 31, 7, 1, 1, 8, 51, 165, 250, 165, 51, 8, 1, 1, 10, 79, 361, 809, 809, 361, 79, 10, 1, 1, 12, 121, 754, 2484, 3759, 2484, 754, 121, 12, 1, 1, 14, 177, 1503, 7240, 16749, 16749, 7240, 1503, 177, 14, 1
Offset: 1
Examples
Triangle T(n,k) (with rows n >= 2 and columns k >= 1) begins as follows: 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 3, 5, 3, 1; 1, 4, 10, 10, 4, 1; 1, 5, 18, 28, 18, 5, 1; 1, 7, 31, 71, 71, 31, 7, 1; 1, 8, 51, 165, 250, 165, 51, 8, 1; ...
Links
- Discrete algorithms at the University of Bayreuth, Symmetrica.
- Harald Fripertinger, Isometry Classes of Codes.
- Harald Fripertinger, Rnk2: Number of the isometry classes of all binary indecomposable (n,k)-codes without zero columns. [This is a rectangular array, denoted by R_{nk2}, whose lower triangle (starting at n = 2) contains the current array T(n,k). The element R_{n=1,k=1,2} = 1 does not appear in the current array T(n,k).]
- Harald Fripertinger, Enumeration of isometry-classes of linear (n,k)-codes over GF(q) in SYMMETRICA, Bayreuther Mathematische Schriften 49 (1999), 215-223. [For a SYMMETRICA program for the calculation of R_{nk2} = T(n,k), see pp. 219-220.]
- H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes, preprint, 1995. [We have T(n,k) = R_{nk2}; see p. 4 of the preprint.]
- H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [We have T(n,k) = R_{nk2}; see p. 197.]
- David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
- David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
- Index entries for sequences related to binary linear codes
Crossrefs
Extensions
More terms from Petros Hadjicostas, Oct 07 2019
Comments