cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A055998 a(n) = n*(n+5)/2.

Original entry on oeis.org

0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272
Offset: 0

Views

Author

Barry E. Williams, Jun 14 2000

Keywords

Comments

If X is an n-set and Y a fixed (n-3)-subset of X then a(n-3) is equal to the number of 2-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Bisection of A165157. - Jaroslav Krizek, Sep 05 2009
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w=x+y-1. - Clark Kimberling, Jun 02 2012
Numbers m >= 0 such that 8m+25 is a square. - Bruce J. Nicholson, Jul 26 2017
a(n-1) = 3*(n-1) + (n-1)*(n-2)/2 is the number of connected, loopless, non-oriented, multi-edge vertex-labeled graphs with n edges and 3 vertices. Labeled multigraph analog of A253186. There are 3*(n-1) graphs with the 3 vertices on a chain (3 ways to label the middle graph, n-1 ways to pack edges on one of connections) and binomial(n-1,2) triangular graphs (one way to label the graphs, pack 1 or 2 or ...n-2 on the 1-2 edge, ...). - R. J. Mathar, Aug 10 2017
a(n) is also the number of vertices of the quiver for PGL_{n+1} (see Shen). - Stefano Spezia, Mar 24 2020
Starting from a(2) = 7, this is the 4th column of the array: natural numbers written by antidiagonals downwards. See the illustration by Kival Ngaokrajang and the cross-references. - Andrey Zabolotskiy, Dec 21 2021

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

Crossrefs

a(n) = A095660(n+1, 2): third column of (1, 3)-Pascal triangle.
Row n=2 of A255961.

Programs

Formula

G.f.: x*(3-2*x)/(1-x)^3.
a(n) = A027379(n), n > 0.
a(n) = A126890(n,2) for n > 1. - Reinhard Zumkeller, Dec 30 2006
a(n) = A000217(n) + A005843(n). - Reinhard Zumkeller, Sep 24 2008
If we define f(n,i,m) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-m-j), then a(n) = -f(n,n-1,3), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = A167544(n+8). - Philippe Deléham, Nov 25 2009
a(n) = a(n-1) + n + 2 with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+2). - Gary Detlefs, Aug 10 2010
a(n) = A034856(n+1) - 1 = A000217(n+2) - 3. - Jaroslav Krizek, Sep 05 2009
Sum_{n>=1} 1/a(n) = 137/150. - R. J. Mathar, Jul 14 2012
a(n) = 3*n + A000217(n-1) = 3*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=3..n+2} i. - Wesley Ivan Hurt, Jun 28 2013
a(n) = 3*A000217(n) - 2*A000217(n-1). - Bruno Berselli, Dec 17 2014
a(n) = A046691(n) + 1. Also, a(n) = A052905(n-1) + 2 = A055999(n-1) + 3 for n>0. - Andrey Zabolotskiy, May 18 2016
E.g.f.: x*(6+x)*exp(x)/2. - G. C. Greubel, Apr 05 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 47/150. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -5*cos(sqrt(33)*Pi/2)/(4*Pi).
Product_{n>=1} (1 + 1/a(n)) = 15*cos(sqrt(17)*Pi/2)/(2*Pi). (End)

A034253 Triangle read by rows: T(n,k) = number of inequivalent linear [n,k] binary codes without 0 columns (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 6, 12, 11, 5, 1, 1, 7, 21, 27, 17, 6, 1, 1, 9, 34, 63, 54, 25, 7, 1, 1, 11, 54, 134, 163, 99, 35, 8, 1, 1, 13, 82, 276, 465, 385, 170, 47, 9, 1, 1, 15, 120, 544, 1283, 1472, 847, 277, 61, 10, 1, 1, 18, 174, 1048, 3480
Offset: 1

Views

Author

Keywords

Comments

"A linear (n, k)-code has columns of zeros, if and only if there is some i ∈ n such that x_i = 0 for all codewords x, and so we should exclude such columns." [Fripertinger and Kerber (1995, p. 196)] - Petros Hadjicostas, Sep 30 2019

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  1;
  1   1;
  1   2   1;
  1   3   3    1;
  1   4   6    4    1;
  1   6  12   11    5   1;
  1,  7, 21,  27,  17,  6,  1;
  1,  9, 34,  63,  54, 25,  7, 1;
  1, 11, 54, 134, 163, 99, 35, 8, 1;
  ...
		

Crossrefs

Cf. A000012 (column k=1), A253186 (column k=2), A034344 (column k=3), A034345 (column k=4), A034346 (column k=5), A034347 (column k=6), A034348 (column k=7), A034349 (column k=8).
Cf. A034254.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 4 gives
    print(A034253col(4, 30)) # Petros Hadjicostas, Sep 30 2019

Formula

From Petros Hadjicostas, Sep 30 2019: (Start)
T(n,k=2) = floor(n/2) + floor((n^2 + 6)/12) = A253186(n).
T(n,k) = A076832(n,k) - A076832(n,k-1) for n, k >= 1, where we define A076832(n,0) := 0 for n >= 1.
G.f. for column k=2: (x^3 - x - 1)*x^2/((x^2 + x + 1)*(x + 1)*(x - 1)^3).
G.f. for column k=3: (x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^7).
G.f. for column k >= 4: modify the Sage program below (cf. function f). It is too complicated to write it here. See also some of the links above.
(End)

A191646 Triangle read by rows: T(n,k) = number of connected multigraphs with n >= 0 edges and 1 <= k <= n+1 vertices, with no loops allowed.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 11, 11, 6, 0, 1, 6, 22, 34, 29, 11, 0, 1, 7, 37, 85, 110, 70, 23, 0, 1, 9, 61, 193, 348, 339, 185, 47, 0, 1, 11, 95, 396, 969, 1318, 1067, 479, 106, 0, 1, 13, 141, 771, 2445, 4457, 4940, 3294, 1279, 235
Offset: 0

Views

Author

Alberto Tacchella, Jul 04 2011

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 2,  2;
  0, 1, 3,  5,  3;
  0, 1, 4, 11, 11,  6;
  0, 1, 6, 22, 34, 29, 11;
  ...
		

Crossrefs

Row sums give A076864. Diagonal is A000055.
Cf. A034253, A054923, A192517, A253186 (column k=3), A290778 (column k=4).

Programs

  • PARI
    EulerT(v)={my(p=exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1); Vec(p/x,-#v)}
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v,x)={sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(v[i]*v[j]/g))) + sum(i=1, #v, my(t=v[i]); ((t-1)\2)*x^t + if(t%2,0,x^(t/2)))}
    G(n,m)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(edges(p,x) + O(x*x^m), -m))); s/n!}
    R(n)={Mat(apply(p->Col(p+O(y^n),-n), InvEulerMT(vector(n, k, 1 + y*Ser(G(k,n-1), y)))))}
    { my(A=R(10)); for(n=1, #A, for(k=1, n, print1(A[n,k], ", "));print) } \\ Andrew Howroyd, May 14 2018

Formula

T(n,k=3) = A253186(n) = A034253(n,k=2) for n >= 1. - Petros Hadjicostas, Oct 02 2019

A328682 Array read by antidiagonals: T(n,r) is the number of connected r-regular loopless multigraphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 0, 1, 0, 1, 1, 4, 6, 6, 1, 0, 0, 1, 0, 1, 0, 6, 0, 19, 0, 1, 0, 0, 1, 0, 1, 1, 7, 15, 49, 50, 20, 1, 0, 0, 1, 0, 1, 0, 9, 0, 120, 0, 204, 0, 1, 0, 0, 1, 0, 1, 1, 11, 36, 263, 933, 1689, 832, 91, 1, 0, 0, 1, 0, 1, 0, 13, 0, 571, 0, 13303, 0, 4330, 0, 1, 0, 0, 1, 0, 1, 1, 15, 72, 1149, 12465, 90614, 252207, 187392, 25227, 509, 1, 0, 0
Offset: 0

Views

Author

Natan Arie Consigli, Dec 17 2019

Keywords

Comments

Initial terms computed using 'Nauty and Traces' (see the link).
T(0,r) = 1 because the "nodeless" graph has zero (therefore in this case all) nodes of degree r (for any r).
T(1,0) = 1 because only the empty graph on one node is 0-regular on 1 node.
T(1,r) = 0, for r>0: there's only one node and loops aren't allowed.
T(2,r) = 1, for r>0 since the only edges that are allowed are between the only two nodes.
T(3,r) = parity of r, for r>0. There are no such graphs of odd degree and for an even degree the only multigraph satisfying that condition is the regular triangular multigraph.
T(n,0) = 0, for n>1 because graphs having more than a node of degree zero are disconnected.
T(n,1) = 0, for n>2 since any connected graph with more than two nodes must have a node of degree greater than two.
T(n,2) = 1, for n>1: the only graphs satisfying that condition are the cyclic graphs of order n.
This sequence may be derived from A333330 by inverse Euler transform. - Andrew Howroyd, Mar 15 2020

Examples

			Square matrix T(n,r) begins:
========================================================
n\r | 0     1     2     3     4     5      6      7
----+---------------------------------------------------
  0 | 1,    1,    1,    1,    1,    1,     1,     1, ...
  1 | 1,    0,    0,    0,    0,    0,     0,     0, ...
  2 | 0,    1,    1,    1,    1,    1,     1,     1, ...
  3 | 0,    0,    1,    0,    1,    0,     1,     0, ...
  4 | 0,    0,    1,    2,    3,    4,     6,     7, ...
  5 | 0,    0,    1,    0,    6,    0,    15,     0, ...
  6 | 0,    0,    1,    6,   19,   49,   120,   263, ...
  7 | 0,    0,    1,    0,   50,    0,   933,     0, ...
  8 | 0,    0,    1,   20,  204, 1689, 13303, 90614, ...
  ...
		

Crossrefs

Columns r=3..8 are: A000421, A129417, A129419, A129421, A129423, A129425.
Cf. A289986 (main diagonal), A333330 (not necessarily connected), A333397.

Programs

  • nauty
    # This program will execute the "else echo" line if the graph is nontrivial (first three columns, first two rows or both row and column indices are odd)
    for ((i=0; i<16; i++)); do
    n=0
    r=${i}
    while ((n<=i)); do
    if( (((r==0)) && ((n==0)) ) || ( ((r==0)) && ((n==1)) ) || ( ((r==1)) && ((n==2)) ) || ( ((r==2)) && !((n==1)) ) ); then
    echo 1
    elif( ((n==0)) || ((n==1)) || ((r==0)) || ((r==1)) || (! ((${r}%2 == 0)) && ! ((${n}%2 == 0)) || ( ((r==2)) && ((n==1)) )) ); then
    echo 0
    else echo $(./geng -c -d1 ${n} -q | ./multig -m${r} -r${r} -u 2>&1 | cut -d ' ' -f 7 | grep -v '^$');  fi;
    ((n++))
    ((r--))
    done
    done

Formula

Column r is the inverse Euler transform of column r of A333330. - Andrew Howroyd, Mar 15 2020

A034344 Number of binary [ n,3 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 21, 34, 54, 82, 120, 174, 244, 337, 458, 613, 808, 1056, 1361, 1738, 2200, 2759, 3431, 4240, 5198, 6333, 7670, 9235, 11056, 13175, 15618, 18432, 21660, 25347, 29543, 34312, 39702, 45786, 52633, 60315, 68910, 78515, 89206, 101092, 114276, 128866, 144978, 162750, 182298
Offset: 1

Views

Author

Keywords

Comments

The g.f. function below was calculated in Sage (using Fripertinger's method) and compared with the one in Lisonek's (2007) Example 5.3 (p. 627). - Petros Hadjicostas, Oct 02 2019

Crossrefs

Column k=3 of A034253.
First differences of A034357.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 3 (this sequence) gives
    print(A034253col(3, 30)) # Petros Hadjicostas, Oct 02 2019

Formula

G.f.: (x^12 - 2*x^11 + x^10 - x^9 - x^6 + x^4 - x - 1)*x^3/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^2 + x + 1)^2*(x^2 + 1)*(x + 1)^2*(x - 1)^7) = (-x^15 + 2*x^14 - x^13 + x^12 + x^9 - x^7 + x^4 + x^3)/((1 - x)^2*(-x^2 + 1)*(-x^3 + 1)^2*(-x^4 + 1)*(-x^7 + 1)). - Petros Hadjicostas, Oct 02 2019

Extensions

More terms from Petros Hadjicostas, Oct 02 2019

A274921 Spiral constructed on the nodes of the triangular net in which each new term is the least positive integer distinct from its neighbors.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 1, 2, 1, 3, 2, 3, 1, 2, 3, 2, 1, 3, 2, 3, 1, 2, 3, 2, 1, 3, 2, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 1, 3, 2, 1, 2, 3, 1, 2, 3, 1, 3, 2, 1
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2016

Keywords

Comments

The structure of the spiral has the following properties:
1) Every 1 is surrounded by three equidistant 2's and three equidistant 3's.
2) Every 2 is surrounded by three equidistant 1's and three equidistant 3's.
3) Every 3 is surrounded by three equidistant 1's and three equidistant 2's.
4) Diagonals are periodic sequences with period 3 (A010882 and A130784).
From Juan Pablo Herrera P., Nov 16 2016: (Start)
5) Every hexagon with a 1 in its center is the same hexagon as the one in the middle of the spiral.
6) Every triangle whose number of numbers is divisible by 3 has the same number of 1's, 2's, and 3's. For example, a triangle with 6 numbers, has two 1's, two 2's, and two 3's. (End)
a(n) = a(n-2) if n > 2 is in A014591, otherwise a(n) = 6 - a(n-1)-a(n-2). - Robert Israel, Sep 15 2017

Examples

			Illustration of initial terms as a spiral:
.
.                3 - 1 - 2 - 3 - 1 - 2
.               /                     \
.              1   2 - 3 - 1 - 2 - 3   1
.             /   /                 \   \
.            2   3   1 - 2 - 3 - 1   2   3
.           /   /   /             \   \   \
.          3   1   2   3 - 1 - 2   3   1   2
.         /   /   /   /         \   \   \   \
.        1   2   3   1   2 - 3   1   2   3   1
.       /   /   /   /   /     \   \   \   \   \
.      2   3   1   2   3   1 - 2   3   1   2   3
.       \   \   \   \   \         /   /   /   /
.        1   2   3   1   2 - 3 - 1   2   3   1
.         \   \   \   \             /   /   /
.          3   1   2   3 - 1 - 2 - 3   1   2
.           \   \   \                 /   /
.            2   3   1 - 2 - 3 - 1 - 2   3
.             \   \                     /
.              1   2 - 3 - 1 - 2 - 3 - 1
.               \
.                3 - 1 - 2 - 3 - 1 - 2
.
		

Crossrefs

Programs

  • Maple
    A[0]:= 1: A[1]:= 2: A[2]:= 3:
    b:= 3: c:= 2: d:= 2: e:= 1: f:= 1:
    for n from 3 to 200 do
      if n = b then
         r:= b; b:= c + d - f + 1; f:= e; e:= d; d:= c; c:= r;
         A[n]:= A[n-2];
      else
         A[n]:= 6 - A[n-1] - A[n-2];
      fi
    od:
    seq(A[i],i=0..200); # Robert Israel, Sep 15 2017

Formula

a(n) = A274920(n) + 1.

A339070 Triangle read by rows: T(n,k) is the number of unlabeled nonseparable (or 2-connected) graphs with n edges and k nodes (n >= 1, 2 <= k <= n + 1).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 3, 3, 1, 0, 0, 0, 0, 2, 9, 4, 1, 0, 0, 0, 0, 1, 14, 20, 6, 1, 0, 0, 0, 0, 1, 12, 50, 40, 7, 1, 0, 0, 0, 0, 0, 8, 82, 161, 70, 9, 1, 0, 0, 0, 0, 0, 5, 94, 429, 433, 121, 11, 1, 0, 0, 0, 0, 0, 2, 81, 780, 1729, 1034, 189, 13, 1, 0
Offset: 1

Views

Author

Andrew Howroyd, Nov 23 2020

Keywords

Examples

			Triangle T(n,k) begins (n edges >= 1, k vertices >= 2):
  1;
  0, 0;
  0, 1, 0;
  0, 0, 1, 0;
  0, 0, 1, 1,  0;
  0, 0, 1, 2,  1,  0;
  0, 0, 0, 3,  3,  1,   0;
  0, 0, 0, 2,  9,  4,   1,   0;
  0, 0, 0, 1, 14, 20,   6,   1,   0;
  0, 0, 0, 1, 12, 50,  40,   7,   1,  0;
  0, 0, 0, 0,  8, 82, 161,  70,   9,  1, 0;
  0, 0, 0, 0,  5, 94, 429, 433, 121, 11, 1, 0;
  ...
		

Crossrefs

Row sums are A010355.
Column sums are A002218.
Cf. A054923, A123534, A253186, A339071 (transpose), A339160.

Formula

T(n, n) = 1 for n >= 3.
T(n, n-1) = A253186(n-3) for n >= 3.

Extensions

First row and column removed by Andrew Howroyd, Dec 05 2020

A342060 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of 2-connected planar graphs with n nodes and k faces, n >= 3, k=2..2*n-4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 13, 21, 16, 5, 2, 1, 4, 29, 94, 183, 154, 76, 18, 5, 1, 6, 59, 328, 1146, 2114, 2144, 1246, 447, 88, 14, 1, 7, 104, 915, 5046, 16009, 30183, 33719, 23749, 10585, 3017, 489, 50, 1, 9, 181, 2239, 17876, 85550, 254831, 478913, 581324, 468388, 255156, 93028, 22077, 3071, 233
Offset: 3

Views

Author

Andrew Howroyd, Mar 27 2021

Keywords

Comments

Equivalently, T(n,k) is the number of unsensed 2-connected planar maps with n vertices and k faces.
The number of edges is n+k-2.
Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 3..15 of this table.

Examples

			Triangle begins:
  1;
  1, 1,  1;
  1, 2,  4,   2,    1;
  1, 3, 13,  21,   16,    5,    2;
  1, 4, 29,  94,  183,  154,   76,   18,   5;
  1, 6, 59, 328, 1146, 2114, 2144, 1246, 447, 88, 14;
  ...
		

Crossrefs

Row sums are A034889.
Cf. A006407 (by edges), A212438 (3-connected), A342059.

Formula

T(n,2) = 1.
T(n,3) = A253186(n-2).

A034345 Number of binary [ n,4 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 0, 1, 4, 11, 27, 63, 134, 276, 544, 1048, 1956, 3577, 6395, 11217, 19307, 32685, 54413, 89225, 144144, 229647, 360975, 560259, 858967, 1301757, 1950955, 2893102, 4246868, 6174084, 8892966, 12696295, 17973092, 25237467, 35163431, 48629902, 66774760, 91063984
Offset: 1

Views

Author

Keywords

Comments

"We say that the sequence (a_n) is quasi-polynomial in n if there exist polynomials P_0, ..., P_{s-1} and an integer n_0 such that, for all n >= n_0, a_n = P_i(n) where i == n (mod s)." [This is from the abstract of Lisonek (2007), and he states that the condition "n >= n_0" makes his definition broader than the one in Stanley's book. From Section 5 of his paper, we conclude that (a(n): n >= 1) is a quasi-polynomial in n.] - Petros Hadjicostas, Oct 02 2019

Crossrefs

Column k=4 of A034253 and first differences of A034358.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 4 (this sequence) gives
    print(A034253col(4, 30)) #

Extensions

More terms by Petros Hadjicostas, Oct 02 2019

A034346 Number of binary [ n,5 ] codes without 0 columns.

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 17, 54, 163, 465, 1283, 3480, 9256, 24282, 62812, 160106, 401824, 992033, 2406329, 5730955, 13393760, 30709772, 69079030, 152473837, 330344629, 702839150, 1469214076, 3019246455, 6103105779, 12142291541, 23790590387, 45932253637, 87434850942, 164188881007
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=5 of A034253 and first differences of A034359.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 (for small k):
    def A034253col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = f1 - f2
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 5 gives a(n):
    print(A034253col(5, 30)) # Petros Hadjicostas, Oct 04 2019

Extensions

More terms from Petros Hadjicostas, Oct 04 2019
Showing 1-10 of 17 results. Next