cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A000421 Number of isomorphism classes of connected 3-regular (trivalent, cubic) loopless multigraphs of order 2n.

Original entry on oeis.org

1, 2, 6, 20, 91, 509, 3608, 31856, 340416, 4269971, 61133757, 978098997, 17228295555, 330552900516, 6853905618223, 152626436936272, 3631575281503404, 91928898608055819, 2466448432564961852, 69907637101781318907
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of isomorphism classes of connected 3-regular simple graphs of order 2n with possibly loops. - Nico Van Cleemput, Jun 04 2014
There are no graphs of order 2n+1 satisfying the condition above. - Natan Arie Consigli, Dec 20 2019

Examples

			From _Natan Arie Consigli_, Dec 20 2019: (Start)
a(1) = 1: with two nodes the only viable option is the triple edged path multigraph.
a(2) = 4: with four nodes we have two cases: the tetrahedral graph and the square graph with single and double edges on opposite sides.
(End)
		

References

  • A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92 [gives incorrect a(6)].
  • CRC Handbook of Combinatorial Designs, 1996, p. 651 [or: 2006, table 4.40].

Crossrefs

Column k=3 of A328682 (table of k-regular n-node multigraphs).
Cf. A129416, A005967 (loops allowed), A129417, A129419, A129421, A129423, A129425, A002851 (no multiedges).

Programs

  • nauty
    for n in {1..10}; do geng -cqD3 $[2*$n] | multig -ur3; done # Sean A. Irvine, Sep 24 2015

Formula

Inverse Euler transform of A129416. - Andrew Howroyd, Mar 19 2020

Extensions

More terms from Brendan McKay, Apr 15 2007
a(13)-a(20) from Andrew Howroyd, Mar 19 2020

A333330 Array read by antidiagonals: T(n,k) is the number of k-regular loopless multigraphs on n unlabeled nodes, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 1, 1, 3, 2, 1, 1, 1, 0, 1, 0, 4, 0, 4, 0, 1, 1, 0, 1, 1, 5, 7, 9, 4, 1, 1, 1, 0, 1, 0, 7, 0, 24, 0, 7, 0, 1, 1, 0, 1, 1, 8, 16, 54, 60, 32, 8, 1, 1, 1, 0, 1, 0, 10, 0, 128, 0, 240, 0, 12, 0, 1, 1, 0, 1, 1, 12, 37, 271, 955, 1753, 930, 135, 14, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 15 2020

Keywords

Comments

Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A333351. Burnside's lemma can be used to extend this method to the unlabeled case.

Examples

			Array begins:
=================================================
n\k | 0 1 2  3   4    5      6     7        8
----+--------------------------------------------
  0 | 1 1 1  1   1    1      1     1        1 ...
  1 | 1 0 0  0   0    0      0     0        0 ...
  2 | 1 1 1  1   1    1      1     1        1 ...
  3 | 1 0 1  0   1    0      1     0        1 ...
  4 | 1 1 2  3   4    5      7     8       10 ...
  5 | 1 0 2  0   7    0     16     0       37 ...
  6 | 1 1 4  9  24   54    128   271      582 ...
  7 | 1 0 4  0  60    0    955     0    12511 ...
  8 | 1 1 7 32 240 1753  13467 90913   543779 ...
  9 | 1 0 8  0 930    0 253373     0 35255015 ...
  ...
		

Crossrefs

Columns k=0..8 are (with interspersed 0's for odd k): A000012, A000012, A002865, A129416, A129418, A129420, A129422, A129424, A129426.
Row n=4 is A001399.
Cf. A051031 (simple graphs), A167625 (with loops), A192517 (not necessarily regular), A328682 (connected), A333351 (labeled nodes).

A129417 Number of isomorphism classes of connected 4-regular loopless multigraphs of order n.

Original entry on oeis.org

1, 0, 1, 1, 3, 6, 19, 50, 204, 832, 4330, 25227, 171886, 1303725, 10959478, 100230117, 989280132, 10455393155, 117701173970, 1405165683359, 17726785643045, 235585551038117, 3289367315407521, 48136794098893837, 736721822918719557, 11768987500655142988
Offset: 0

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
Obtained from A129418 by an inverse Euler transform. - R. J. Mathar, Mar 09 2019

Crossrefs

Programs

Extensions

a(0)-a(1) prepended by Natan Arie Consigli, Jun 05 2017
a(18)-a(25) from Andrew Howroyd, Mar 17 2020

A129419 Number of isomorphism classes of connected 5-regular loopless multigraphs of order 2n.

Original entry on oeis.org

1, 4, 49, 1689, 187392, 46738368, 20446754006, 14021056991357, 14141140657400321, 20047531681346319557, 38567298550226625579671, 97861817259606311572409609, 319914449561753621623849929222, 1320949150506412557504787822889933, 6773751604973857152218372443743552754
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129420. - Andrew Howroyd, Mar 17 2020

Extensions

a(8)-a(15) from Andrew Howroyd, Mar 21 2020

A129421 Number of isomorphism classes of connected 6-regular loopless multigraphs of order n.

Original entry on oeis.org

0, 1, 1, 6, 15, 120, 933, 13303, 252207, 6450828, 205475039, 7936493756, 363639228194, 19476976825809, 1205115679461426, 85288127619421544, 6845235025444882069, 618411485467843477405, 62471139399366989007575, 7014991719815977343879171
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129422. - Andrew Howroyd, Mar 17 2020

Extensions

a(1)=0 prepended and a(14)-a(20) from Andrew Howroyd, Mar 17 2020

A129425 Number of isomorphism classes of connected 8-regular loopless multigraphs of order n.

Original entry on oeis.org

0, 1, 1, 9, 36, 571, 12465, 543116, 35241608, 3230417239, 397514307014, 63830872225605, 13080448625309965, 3358687593761378470, 1063838242661288090062, 410057057694777406364151, 190064879184725871853627854, 104825763290631293396894238206
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129426. - Andrew Howroyd, Mar 17 2020

Extensions

Deleted a(0) and a(1). - N. J. A. Sloane, Jan 11 2020
a(1)=0 prepended and a(12)-a(18) from Andrew Howroyd, Mar 17 2020

A333397 Array read by antidiagonals: T(n,k) is the number of connected k-regular multigraphs on n unlabeled nodes, loops allowed, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 1, 3, 4, 5, 1, 0, 0, 1, 0, 3, 0, 10, 0, 1, 0, 0, 1, 1, 4, 9, 26, 28, 17, 1, 0, 0, 1, 0, 4, 0, 47, 0, 97, 0, 1, 0, 0, 1, 1, 5, 17, 91, 291, 639, 359, 71, 1, 0, 0, 1, 0, 5, 0, 149, 0, 2789, 0, 1635, 0, 1, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Mar 18 2020

Keywords

Comments

This sequence can be derived from A167625 by inverse Euler transform.

Examples

			Array begins:
=========================================================
n\k | 0 1 2  3    4     5        6       7          8
----+----------------------------------------------------
  0 | 1 1 1  1    1     1        1       1          1 ...
  1 | 1 0 1  0    1     0        1       0          1 ...
  2 | 0 1 1  2    2     3        3       4          4 ...
  3 | 0 0 1  0    4     0        9       0         17 ...
  4 | 0 0 1  5   10    26       47      91        149 ...
  5 | 0 0 1  0   28     0      291       0       1934 ...
  6 | 0 0 1 17   97   639     2789   12398      44821 ...
  7 | 0 0 1  0  359     0    35646       0    1631629 ...
  8 | 0 0 1 71 1635 40264   622457 8530044   89057367 ...
  9 | 0 0 1  0 8296     0 14019433       0 6849428873 ...
  ...
		

Crossrefs

Columns k=3..8 (with interspersed 0's for odd k) are: A005967, A085549, A129430, A129432, A129434, A129436.
Cf. A167625 (not necessarily connected), A322115 (not necessarily regular), A328682 (loopless), A333330.

Formula

Column k is the inverse Euler transform of column k of A167625.

A129423 Number of isomorphism classes of connected 7-regular loopless multigraphs of order 2n.

Original entry on oeis.org

1, 7, 263, 90614, 165041329, 861723619902, 10351918806321621, 253216618556625008961, 11542463442106815907796586, 915449471830886733265105097578
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129424. - Andrew Howroyd, Mar 21 2020

Extensions

a(7)-a(10) from Andrew Howroyd, Mar 21 2020

A334546 Array read by antidiagonals: T(n,k) is the number of unlabeled connected loopless multigraphs with n nodes of degree k or less.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 0, 1, 1, 3, 2, 0, 0, 1, 1, 4, 4, 2, 0, 0, 1, 1, 5, 9, 12, 2, 0, 0, 1, 1, 6, 14, 37, 22, 2, 0, 0, 1, 1, 7, 23, 93, 146, 68, 2, 0, 0, 1, 1, 8, 32, 203, 602, 772, 166, 2, 0, 0, 1, 1, 9, 46, 399, 2126, 5847, 4449, 534, 2, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, May 05 2020

Keywords

Comments

This sequence may be derived from A333893 by inverse Euler transform.

Examples

			Array begins:
==============================================
n\k | 0 1 2   3    4     5      6       7
----+-----------------------------------------
  0 | 1 1 1   1    1     1      1       1 ...
  1 | 1 1 1   1    1     1      1       1 ...
  2 | 0 1 2   3    4     5      6       7 ...
  3 | 0 0 2   4    9    14     23      32 ...
  4 | 0 0 2  12   37    93    203     399 ...
  5 | 0 0 2  22  146   602   2126    6308 ...
  6 | 0 0 2  68  772  5847  34126  164965 ...
  7 | 0 0 2 166 4449 66289 716141 6021463 ...
  ...
		

Crossrefs

Columns k=3..5 are A243391, A289157, A334547.
Main diagonal is A334546.
Cf. A289987, A328682 (regular), A333893 (not necessarily connected).

Formula

Column k is the inverse Euler transform of column k of A333893.

A324218 Number of connected n-regular loopless multigraphs on six unlabeled nodes.

Original entry on oeis.org

0, 0, 1, 6, 19, 49, 120, 263, 571, 1149, 2259, 4218, 7679, 13437, 22952, 38013, 61580, 97309, 150838, 229045, 342048, 502066, 726318, 1035482, 1457677, 2026369, 2785873, 3788494, 5101847, 6805192, 8998964, 11799997, 15353938, 19829063, 25431994, 32400113, 41021075, 51623423
Offset: 0

Views

Author

Natan Arie Consigli, Feb 25 2019

Keywords

Comments

Multigraphs are loopless.
Terms computed using 'nauty and Traces' (see the link).

Crossrefs

Row n=6 of A328682.

Programs

  • nauty
    for ((n=0;n<50;n++)); do geng -c -d1 6 -q | multig -r${n} -u; done
Showing 1-10 of 17 results. Next