cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A328682 Array read by antidiagonals: T(n,r) is the number of connected r-regular loopless multigraphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 0, 1, 0, 1, 1, 4, 6, 6, 1, 0, 0, 1, 0, 1, 0, 6, 0, 19, 0, 1, 0, 0, 1, 0, 1, 1, 7, 15, 49, 50, 20, 1, 0, 0, 1, 0, 1, 0, 9, 0, 120, 0, 204, 0, 1, 0, 0, 1, 0, 1, 1, 11, 36, 263, 933, 1689, 832, 91, 1, 0, 0, 1, 0, 1, 0, 13, 0, 571, 0, 13303, 0, 4330, 0, 1, 0, 0, 1, 0, 1, 1, 15, 72, 1149, 12465, 90614, 252207, 187392, 25227, 509, 1, 0, 0
Offset: 0

Views

Author

Natan Arie Consigli, Dec 17 2019

Keywords

Comments

Initial terms computed using 'Nauty and Traces' (see the link).
T(0,r) = 1 because the "nodeless" graph has zero (therefore in this case all) nodes of degree r (for any r).
T(1,0) = 1 because only the empty graph on one node is 0-regular on 1 node.
T(1,r) = 0, for r>0: there's only one node and loops aren't allowed.
T(2,r) = 1, for r>0 since the only edges that are allowed are between the only two nodes.
T(3,r) = parity of r, for r>0. There are no such graphs of odd degree and for an even degree the only multigraph satisfying that condition is the regular triangular multigraph.
T(n,0) = 0, for n>1 because graphs having more than a node of degree zero are disconnected.
T(n,1) = 0, for n>2 since any connected graph with more than two nodes must have a node of degree greater than two.
T(n,2) = 1, for n>1: the only graphs satisfying that condition are the cyclic graphs of order n.
This sequence may be derived from A333330 by inverse Euler transform. - Andrew Howroyd, Mar 15 2020

Examples

			Square matrix T(n,r) begins:
========================================================
n\r | 0     1     2     3     4     5      6      7
----+---------------------------------------------------
  0 | 1,    1,    1,    1,    1,    1,     1,     1, ...
  1 | 1,    0,    0,    0,    0,    0,     0,     0, ...
  2 | 0,    1,    1,    1,    1,    1,     1,     1, ...
  3 | 0,    0,    1,    0,    1,    0,     1,     0, ...
  4 | 0,    0,    1,    2,    3,    4,     6,     7, ...
  5 | 0,    0,    1,    0,    6,    0,    15,     0, ...
  6 | 0,    0,    1,    6,   19,   49,   120,   263, ...
  7 | 0,    0,    1,    0,   50,    0,   933,     0, ...
  8 | 0,    0,    1,   20,  204, 1689, 13303, 90614, ...
  ...
		

Crossrefs

Columns r=3..8 are: A000421, A129417, A129419, A129421, A129423, A129425.
Cf. A289986 (main diagonal), A333330 (not necessarily connected), A333397.

Programs

  • nauty
    # This program will execute the "else echo" line if the graph is nontrivial (first three columns, first two rows or both row and column indices are odd)
    for ((i=0; i<16; i++)); do
    n=0
    r=${i}
    while ((n<=i)); do
    if( (((r==0)) && ((n==0)) ) || ( ((r==0)) && ((n==1)) ) || ( ((r==1)) && ((n==2)) ) || ( ((r==2)) && !((n==1)) ) ); then
    echo 1
    elif( ((n==0)) || ((n==1)) || ((r==0)) || ((r==1)) || (! ((${r}%2 == 0)) && ! ((${n}%2 == 0)) || ( ((r==2)) && ((n==1)) )) ); then
    echo 0
    else echo $(./geng -c -d1 ${n} -q | ./multig -m${r} -r${r} -u 2>&1 | cut -d ' ' -f 7 | grep -v '^$');  fi;
    ((n++))
    ((r--))
    done
    done

Formula

Column r is the inverse Euler transform of column r of A333330. - Andrew Howroyd, Mar 15 2020

A000421 Number of isomorphism classes of connected 3-regular (trivalent, cubic) loopless multigraphs of order 2n.

Original entry on oeis.org

1, 2, 6, 20, 91, 509, 3608, 31856, 340416, 4269971, 61133757, 978098997, 17228295555, 330552900516, 6853905618223, 152626436936272, 3631575281503404, 91928898608055819, 2466448432564961852, 69907637101781318907
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of isomorphism classes of connected 3-regular simple graphs of order 2n with possibly loops. - Nico Van Cleemput, Jun 04 2014
There are no graphs of order 2n+1 satisfying the condition above. - Natan Arie Consigli, Dec 20 2019

Examples

			From _Natan Arie Consigli_, Dec 20 2019: (Start)
a(1) = 1: with two nodes the only viable option is the triple edged path multigraph.
a(2) = 4: with four nodes we have two cases: the tetrahedral graph and the square graph with single and double edges on opposite sides.
(End)
		

References

  • A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92 [gives incorrect a(6)].
  • CRC Handbook of Combinatorial Designs, 1996, p. 651 [or: 2006, table 4.40].

Crossrefs

Column k=3 of A328682 (table of k-regular n-node multigraphs).
Cf. A129416, A005967 (loops allowed), A129417, A129419, A129421, A129423, A129425, A002851 (no multiedges).

Programs

  • nauty
    for n in {1..10}; do geng -cqD3 $[2*$n] | multig -ur3; done # Sean A. Irvine, Sep 24 2015

Formula

Inverse Euler transform of A129416. - Andrew Howroyd, Mar 19 2020

Extensions

More terms from Brendan McKay, Apr 15 2007
a(13)-a(20) from Andrew Howroyd, Mar 19 2020

A129417 Number of isomorphism classes of connected 4-regular loopless multigraphs of order n.

Original entry on oeis.org

1, 0, 1, 1, 3, 6, 19, 50, 204, 832, 4330, 25227, 171886, 1303725, 10959478, 100230117, 989280132, 10455393155, 117701173970, 1405165683359, 17726785643045, 235585551038117, 3289367315407521, 48136794098893837, 736721822918719557, 11768987500655142988
Offset: 0

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
Obtained from A129418 by an inverse Euler transform. - R. J. Mathar, Mar 09 2019

Crossrefs

Programs

Extensions

a(0)-a(1) prepended by Natan Arie Consigli, Jun 05 2017
a(18)-a(25) from Andrew Howroyd, Mar 17 2020

A129419 Number of isomorphism classes of connected 5-regular loopless multigraphs of order 2n.

Original entry on oeis.org

1, 4, 49, 1689, 187392, 46738368, 20446754006, 14021056991357, 14141140657400321, 20047531681346319557, 38567298550226625579671, 97861817259606311572409609, 319914449561753621623849929222, 1320949150506412557504787822889933, 6773751604973857152218372443743552754
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129420. - Andrew Howroyd, Mar 17 2020

Extensions

a(8)-a(15) from Andrew Howroyd, Mar 21 2020

A129425 Number of isomorphism classes of connected 8-regular loopless multigraphs of order n.

Original entry on oeis.org

0, 1, 1, 9, 36, 571, 12465, 543116, 35241608, 3230417239, 397514307014, 63830872225605, 13080448625309965, 3358687593761378470, 1063838242661288090062, 410057057694777406364151, 190064879184725871853627854, 104825763290631293396894238206
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129426. - Andrew Howroyd, Mar 17 2020

Extensions

Deleted a(0) and a(1). - N. J. A. Sloane, Jan 11 2020
a(1)=0 prepended and a(12)-a(18) from Andrew Howroyd, Mar 17 2020

A129422 Number of isomorphism classes of 6-regular loopless multigraphs of order n.

Original entry on oeis.org

0, 1, 1, 7, 16, 128, 955, 13467, 253373, 6466074, 205749149, 7943313377, 363853255012, 19485170158346, 1205488841884007, 85308028236495340, 6846462326434510551, 618498122199399056707, 62478078728492272712838, 7015617595855429187696753
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Formula

Euler transform of A129421. - Andrew Howroyd, Mar 14 2020

Extensions

a(1)=0 prepended and a(14)-a(20) from Andrew Howroyd, Mar 17 2020

A129423 Number of isomorphism classes of connected 7-regular loopless multigraphs of order 2n.

Original entry on oeis.org

1, 7, 263, 90614, 165041329, 861723619902, 10351918806321621, 253216618556625008961, 11542463442106815907796586, 915449471830886733265105097578
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129424. - Andrew Howroyd, Mar 21 2020

Extensions

a(7)-a(10) from Andrew Howroyd, Mar 21 2020

A129432 Number of isomorphism classes of connected 6-regular multigraphs of order n, loops allowed.

Original entry on oeis.org

1, 3, 9, 47, 291, 2789, 35646, 622457, 14019433, 395208047, 13561118011, 555498075986, 26751985389463, 1496090275853092, 96154662330195078, 7038800665162854369, 582281978355495520076, 54057819690711609171892, 5597375885970846586170796, 642829784413912305507730345
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Formula

Inverse Euler transform of A129433. - Andrew Howroyd, Mar 19 2020

Extensions

a(13)-a(20) added by Andrew Howroyd, Mar 19 2020

A289986 Number of connected 2n-regular loopless multigraphs on 2n unlabeled nodes.

Original entry on oeis.org

1, 1, 3, 120, 543116, 635669057538, 112368754788708539549
Offset: 0

Views

Author

Natan Arie Consigli, Aug 19 2017

Keywords

Comments

Multigraphs are loopless.
There are no (2n+1)-regular multigraphs with (2n+1) number of points, for every nonnegative n.

Crossrefs

Programs

  • nauty
    for n in {1..4}; do geng -c -d1 $[2*$n] -q | multig -m$[2*$n] -r$[2*$n] -u; done

Formula

a(n) = A328682(2*n, 2*n). - Andrew Howroyd, Mar 18 2020

Extensions

a(5)-a(6) from Andrew Howroyd, Mar 18 2020
Showing 1-9 of 9 results.