cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A005965 Erroneous version of A000421.

Original entry on oeis.org

1, 2, 6, 20, 91, 506
Offset: 1

Views

Author

Keywords

References

  • A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A210690 Erroneous version of A000421.

Original entry on oeis.org

1, 2, 6, 20, 93
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2012

Keywords

References

  • Cadogan, C. C. Graph-lattices and the enumeration of linear graphs. 1970 Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1970) pp. 61--86 Louisiana State Univ., Baton Rouge, La. MR0269553 (42 #4448).

A002851 Number of unlabeled trivalent (or cubic) connected simple graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 5, 19, 85, 509, 4060, 41301, 510489, 7319447, 117940535, 2094480864, 40497138011, 845480228069, 18941522184590, 453090162062723, 11523392072541432, 310467244165539782, 8832736318937756165
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x^2 + 2*x^3 + 5*x^4 + 19*x^5 + 85*x^6 + 509*x^7 + 4060*x^8 + 41302*x^9 + 510489*x^10 + 7319447*x^11 + ...
a(0) = 1 because the null graph (with no vertices) is vacuously 3-regular.
a(1) = 0 because there are no simple connected cubic graphs with 2 nodes.
a(2) = 1 because the tetrahedron is the only cubic graph with 4 nodes.
a(3) = 2 because there are two simple cubic graphs with 6 nodes: the bipartite graph K_{3,3} and the triangular prism graph.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 647.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 195.
  • R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.
  • R. C. Read and G. F. Royle, Chromatic roots of families of graphs, pp. 1009-1029 of Y. Alavi et al., eds., Graph Theory, Combinatorics and Applications. Wiley, NY, 2 vols., 1991.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence)

Crossrefs

Cf. A004109 (labeled connected cubic), A361407 (rooted connected cubic), A321305 (signed connected cubic), A000421 (connected cubic loopless multigraphs), A005967 (connected cubic multigraphs), A275744 (multisets).
Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
3-regular simple graphs: this sequence (connected), A165653 (disconnected), A005638 (not necessarily connected), A005964 (planar).
Connected regular graphs A005177 (any degree), A068934 (triangular array), specified degree k: this sequence (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: this sequence (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)

Extensions

More terms from Ronald C. Read

A005638 Number of unlabeled trivalent (or cubic) graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 6, 21, 94, 540, 4207, 42110, 516344, 7373924, 118573592, 2103205738, 40634185402, 847871397424, 18987149095005, 454032821688754, 11544329612485981, 310964453836198311, 8845303172513781271
Offset: 0

Views

Author

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000421.
Row sums of A275744.
3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A002851(n) + A165653(n).
This sequence is the Euler transformation of A002851.

Extensions

More terms from Ronald C. Read.
Comment, formulas, and (most) crossrefs by Jason Kimberley, 2009 and 2012

A328682 Array read by antidiagonals: T(n,r) is the number of connected r-regular loopless multigraphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 0, 1, 0, 1, 1, 4, 6, 6, 1, 0, 0, 1, 0, 1, 0, 6, 0, 19, 0, 1, 0, 0, 1, 0, 1, 1, 7, 15, 49, 50, 20, 1, 0, 0, 1, 0, 1, 0, 9, 0, 120, 0, 204, 0, 1, 0, 0, 1, 0, 1, 1, 11, 36, 263, 933, 1689, 832, 91, 1, 0, 0, 1, 0, 1, 0, 13, 0, 571, 0, 13303, 0, 4330, 0, 1, 0, 0, 1, 0, 1, 1, 15, 72, 1149, 12465, 90614, 252207, 187392, 25227, 509, 1, 0, 0
Offset: 0

Views

Author

Natan Arie Consigli, Dec 17 2019

Keywords

Comments

Initial terms computed using 'Nauty and Traces' (see the link).
T(0,r) = 1 because the "nodeless" graph has zero (therefore in this case all) nodes of degree r (for any r).
T(1,0) = 1 because only the empty graph on one node is 0-regular on 1 node.
T(1,r) = 0, for r>0: there's only one node and loops aren't allowed.
T(2,r) = 1, for r>0 since the only edges that are allowed are between the only two nodes.
T(3,r) = parity of r, for r>0. There are no such graphs of odd degree and for an even degree the only multigraph satisfying that condition is the regular triangular multigraph.
T(n,0) = 0, for n>1 because graphs having more than a node of degree zero are disconnected.
T(n,1) = 0, for n>2 since any connected graph with more than two nodes must have a node of degree greater than two.
T(n,2) = 1, for n>1: the only graphs satisfying that condition are the cyclic graphs of order n.
This sequence may be derived from A333330 by inverse Euler transform. - Andrew Howroyd, Mar 15 2020

Examples

			Square matrix T(n,r) begins:
========================================================
n\r | 0     1     2     3     4     5      6      7
----+---------------------------------------------------
  0 | 1,    1,    1,    1,    1,    1,     1,     1, ...
  1 | 1,    0,    0,    0,    0,    0,     0,     0, ...
  2 | 0,    1,    1,    1,    1,    1,     1,     1, ...
  3 | 0,    0,    1,    0,    1,    0,     1,     0, ...
  4 | 0,    0,    1,    2,    3,    4,     6,     7, ...
  5 | 0,    0,    1,    0,    6,    0,    15,     0, ...
  6 | 0,    0,    1,    6,   19,   49,   120,   263, ...
  7 | 0,    0,    1,    0,   50,    0,   933,     0, ...
  8 | 0,    0,    1,   20,  204, 1689, 13303, 90614, ...
  ...
		

Crossrefs

Columns r=3..8 are: A000421, A129417, A129419, A129421, A129423, A129425.
Cf. A289986 (main diagonal), A333330 (not necessarily connected), A333397.

Programs

  • nauty
    # This program will execute the "else echo" line if the graph is nontrivial (first three columns, first two rows or both row and column indices are odd)
    for ((i=0; i<16; i++)); do
    n=0
    r=${i}
    while ((n<=i)); do
    if( (((r==0)) && ((n==0)) ) || ( ((r==0)) && ((n==1)) ) || ( ((r==1)) && ((n==2)) ) || ( ((r==2)) && !((n==1)) ) ); then
    echo 1
    elif( ((n==0)) || ((n==1)) || ((r==0)) || ((r==1)) || (! ((${r}%2 == 0)) && ! ((${n}%2 == 0)) || ( ((r==2)) && ((n==1)) )) ); then
    echo 0
    else echo $(./geng -c -d1 ${n} -q | ./multig -m${r} -r${r} -u 2>&1 | cut -d ' ' -f 7 | grep -v '^$');  fi;
    ((n++))
    ((r--))
    done
    done

Formula

Column r is the inverse Euler transform of column r of A333330. - Andrew Howroyd, Mar 15 2020

A005967 Number of isomorphism classes of connected 3-regular multigraphs of order 2n, loops allowed.

Original entry on oeis.org

2, 5, 17, 71, 388, 2592, 21096, 204638, 2317172, 30024276, 437469859, 7067109598, 125184509147, 2410455693765, 50101933643655, 1117669367609605, 26629298567576331, 674793598023809924, 18119844622209998036
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of maximal cells in the moduli space of tropical curves of genus n+1; see Melody Chan (2012) reference. a(n) is also the number of maximally degenerate stable nodal algebraic curves of genus n+1, up to isomorphism, by the association of a stable nodal curve to its dual graph. - Harry Richman, Oct 23 2023

References

  • A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A333397.
Cf. A129427 (Euler transf.), A000421 (no loops), A085549, A129430, A129432, A129434, A129436.

Formula

Inverse Euler transform of A129427.

Extensions

Checked by Brendan McKay, Apr 15 2007
Using sequence A129427, terms a(12)-a(16) were computed in GAP by Ignat Soroko, Apr 07 2010
a(17)-a(19) added by Andrew Howroyd, Mar 19 2020

A129417 Number of isomorphism classes of connected 4-regular loopless multigraphs of order n.

Original entry on oeis.org

1, 0, 1, 1, 3, 6, 19, 50, 204, 832, 4330, 25227, 171886, 1303725, 10959478, 100230117, 989280132, 10455393155, 117701173970, 1405165683359, 17726785643045, 235585551038117, 3289367315407521, 48136794098893837, 736721822918719557, 11768987500655142988
Offset: 0

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
Obtained from A129418 by an inverse Euler transform. - R. J. Mathar, Mar 09 2019

Crossrefs

Programs

Extensions

a(0)-a(1) prepended by Natan Arie Consigli, Jun 05 2017
a(18)-a(25) from Andrew Howroyd, Mar 17 2020

A129416 Number of isomorphism classes of 3-regular loopless multigraphs of order 2n.

Original entry on oeis.org

1, 3, 9, 32, 135, 709, 4637, 38374, 391473, 4764778, 66913591, 1056886475, 18446472265, 351482430368, 7247888726269, 160671989129665, 3808499268504548, 96094161981827499, 2570930535917564366, 72688753062897675445
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Column k=3 of A333330.
Cf. A000421 (connected, inv. Eul. trans.), A129427, A129418, A129420, A129422, A129424, A129426.

Formula

Euler transform of A000421.

Extensions

a(13)-a(20) from Andrew Howroyd, Mar 19 2020

A129419 Number of isomorphism classes of connected 5-regular loopless multigraphs of order 2n.

Original entry on oeis.org

1, 4, 49, 1689, 187392, 46738368, 20446754006, 14021056991357, 14141140657400321, 20047531681346319557, 38567298550226625579671, 97861817259606311572409609, 319914449561753621623849929222, 1320949150506412557504787822889933, 6773751604973857152218372443743552754
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129420. - Andrew Howroyd, Mar 17 2020

Extensions

a(8)-a(15) from Andrew Howroyd, Mar 21 2020

A129421 Number of isomorphism classes of connected 6-regular loopless multigraphs of order n.

Original entry on oeis.org

0, 1, 1, 6, 15, 120, 933, 13303, 252207, 6450828, 205475039, 7936493756, 363639228194, 19476976825809, 1205115679461426, 85288127619421544, 6845235025444882069, 618411485467843477405, 62471139399366989007575, 7014991719815977343879171
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129422. - Andrew Howroyd, Mar 17 2020

Extensions

a(1)=0 prepended and a(14)-a(20) from Andrew Howroyd, Mar 17 2020
Showing 1-10 of 15 results. Next