cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A006821 Number of connected regular graphs of degree 5 (or quintic graphs) with 2n nodes.

Original entry on oeis.org

1, 0, 0, 1, 3, 60, 7848, 3459383, 2585136675, 2807105250897, 4221456117363365, 8516994770090547979, 22470883218081146186209, 75883288444204588922998674, 322040154704144697047052726990
Offset: 0

Views

Author

Keywords

Examples

			a(0)=1 because the null graph (with no vertices) is vacuously 5-regular and connected.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 648.
  • I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
5-regular simple graphs: this sequence (connected), A165655 (disconnected), A165626 (not necessarily connected).
Connected regular simple graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), this sequence (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 5-regular simple graphs with girth at least g: this sequence (g=3), A058275 (g=4), A205295 (g=5).
Connected 5-regular simple graphs with girth exactly g: A184953 (g=3), A184954 (g=4), A184955 (g=5).
Connected 5-regular graphs: A129430 (loops and multiple edges allowed), A129419 (no loops but multiple edges allowed), this sequence (no loops nor multiple edges). (End)

Formula

a(n) = A184953(n) + A058275(n).
a(n) = A165626(n) - A165655(n).
Inverse Euler transform of A165626.

Extensions

By running M. Meringer's GENREG for about 2 processor years at U. Newcastle, a(9) was found by Jason Kimberley, Nov 24 2009
a(10)-a(14) from Andrew Howroyd, Mar 10 2020

A328682 Array read by antidiagonals: T(n,r) is the number of connected r-regular loopless multigraphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 0, 1, 0, 1, 1, 4, 6, 6, 1, 0, 0, 1, 0, 1, 0, 6, 0, 19, 0, 1, 0, 0, 1, 0, 1, 1, 7, 15, 49, 50, 20, 1, 0, 0, 1, 0, 1, 0, 9, 0, 120, 0, 204, 0, 1, 0, 0, 1, 0, 1, 1, 11, 36, 263, 933, 1689, 832, 91, 1, 0, 0, 1, 0, 1, 0, 13, 0, 571, 0, 13303, 0, 4330, 0, 1, 0, 0, 1, 0, 1, 1, 15, 72, 1149, 12465, 90614, 252207, 187392, 25227, 509, 1, 0, 0
Offset: 0

Views

Author

Natan Arie Consigli, Dec 17 2019

Keywords

Comments

Initial terms computed using 'Nauty and Traces' (see the link).
T(0,r) = 1 because the "nodeless" graph has zero (therefore in this case all) nodes of degree r (for any r).
T(1,0) = 1 because only the empty graph on one node is 0-regular on 1 node.
T(1,r) = 0, for r>0: there's only one node and loops aren't allowed.
T(2,r) = 1, for r>0 since the only edges that are allowed are between the only two nodes.
T(3,r) = parity of r, for r>0. There are no such graphs of odd degree and for an even degree the only multigraph satisfying that condition is the regular triangular multigraph.
T(n,0) = 0, for n>1 because graphs having more than a node of degree zero are disconnected.
T(n,1) = 0, for n>2 since any connected graph with more than two nodes must have a node of degree greater than two.
T(n,2) = 1, for n>1: the only graphs satisfying that condition are the cyclic graphs of order n.
This sequence may be derived from A333330 by inverse Euler transform. - Andrew Howroyd, Mar 15 2020

Examples

			Square matrix T(n,r) begins:
========================================================
n\r | 0     1     2     3     4     5      6      7
----+---------------------------------------------------
  0 | 1,    1,    1,    1,    1,    1,     1,     1, ...
  1 | 1,    0,    0,    0,    0,    0,     0,     0, ...
  2 | 0,    1,    1,    1,    1,    1,     1,     1, ...
  3 | 0,    0,    1,    0,    1,    0,     1,     0, ...
  4 | 0,    0,    1,    2,    3,    4,     6,     7, ...
  5 | 0,    0,    1,    0,    6,    0,    15,     0, ...
  6 | 0,    0,    1,    6,   19,   49,   120,   263, ...
  7 | 0,    0,    1,    0,   50,    0,   933,     0, ...
  8 | 0,    0,    1,   20,  204, 1689, 13303, 90614, ...
  ...
		

Crossrefs

Columns r=3..8 are: A000421, A129417, A129419, A129421, A129423, A129425.
Cf. A289986 (main diagonal), A333330 (not necessarily connected), A333397.

Programs

  • nauty
    # This program will execute the "else echo" line if the graph is nontrivial (first three columns, first two rows or both row and column indices are odd)
    for ((i=0; i<16; i++)); do
    n=0
    r=${i}
    while ((n<=i)); do
    if( (((r==0)) && ((n==0)) ) || ( ((r==0)) && ((n==1)) ) || ( ((r==1)) && ((n==2)) ) || ( ((r==2)) && !((n==1)) ) ); then
    echo 1
    elif( ((n==0)) || ((n==1)) || ((r==0)) || ((r==1)) || (! ((${r}%2 == 0)) && ! ((${n}%2 == 0)) || ( ((r==2)) && ((n==1)) )) ); then
    echo 0
    else echo $(./geng -c -d1 ${n} -q | ./multig -m${r} -r${r} -u 2>&1 | cut -d ' ' -f 7 | grep -v '^$');  fi;
    ((n++))
    ((r--))
    done
    done

Formula

Column r is the inverse Euler transform of column r of A333330. - Andrew Howroyd, Mar 15 2020

A000421 Number of isomorphism classes of connected 3-regular (trivalent, cubic) loopless multigraphs of order 2n.

Original entry on oeis.org

1, 2, 6, 20, 91, 509, 3608, 31856, 340416, 4269971, 61133757, 978098997, 17228295555, 330552900516, 6853905618223, 152626436936272, 3631575281503404, 91928898608055819, 2466448432564961852, 69907637101781318907
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of isomorphism classes of connected 3-regular simple graphs of order 2n with possibly loops. - Nico Van Cleemput, Jun 04 2014
There are no graphs of order 2n+1 satisfying the condition above. - Natan Arie Consigli, Dec 20 2019

Examples

			From _Natan Arie Consigli_, Dec 20 2019: (Start)
a(1) = 1: with two nodes the only viable option is the triple edged path multigraph.
a(2) = 4: with four nodes we have two cases: the tetrahedral graph and the square graph with single and double edges on opposite sides.
(End)
		

References

  • A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92 [gives incorrect a(6)].
  • CRC Handbook of Combinatorial Designs, 1996, p. 651 [or: 2006, table 4.40].

Crossrefs

Column k=3 of A328682 (table of k-regular n-node multigraphs).
Cf. A129416, A005967 (loops allowed), A129417, A129419, A129421, A129423, A129425, A002851 (no multiedges).

Programs

  • nauty
    for n in {1..10}; do geng -cqD3 $[2*$n] | multig -ur3; done # Sean A. Irvine, Sep 24 2015

Formula

Inverse Euler transform of A129416. - Andrew Howroyd, Mar 19 2020

Extensions

More terms from Brendan McKay, Apr 15 2007
a(13)-a(20) from Andrew Howroyd, Mar 19 2020

A129417 Number of isomorphism classes of connected 4-regular loopless multigraphs of order n.

Original entry on oeis.org

1, 0, 1, 1, 3, 6, 19, 50, 204, 832, 4330, 25227, 171886, 1303725, 10959478, 100230117, 989280132, 10455393155, 117701173970, 1405165683359, 17726785643045, 235585551038117, 3289367315407521, 48136794098893837, 736721822918719557, 11768987500655142988
Offset: 0

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
Obtained from A129418 by an inverse Euler transform. - R. J. Mathar, Mar 09 2019

Crossrefs

Programs

Extensions

a(0)-a(1) prepended by Natan Arie Consigli, Jun 05 2017
a(18)-a(25) from Andrew Howroyd, Mar 17 2020

A129421 Number of isomorphism classes of connected 6-regular loopless multigraphs of order n.

Original entry on oeis.org

0, 1, 1, 6, 15, 120, 933, 13303, 252207, 6450828, 205475039, 7936493756, 363639228194, 19476976825809, 1205115679461426, 85288127619421544, 6845235025444882069, 618411485467843477405, 62471139399366989007575, 7014991719815977343879171
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129422. - Andrew Howroyd, Mar 17 2020

Extensions

a(1)=0 prepended and a(14)-a(20) from Andrew Howroyd, Mar 17 2020

A129425 Number of isomorphism classes of connected 8-regular loopless multigraphs of order n.

Original entry on oeis.org

0, 1, 1, 9, 36, 571, 12465, 543116, 35241608, 3230417239, 397514307014, 63830872225605, 13080448625309965, 3358687593761378470, 1063838242661288090062, 410057057694777406364151, 190064879184725871853627854, 104825763290631293396894238206
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129426. - Andrew Howroyd, Mar 17 2020

Extensions

Deleted a(0) and a(1). - N. J. A. Sloane, Jan 11 2020
a(1)=0 prepended and a(12)-a(18) from Andrew Howroyd, Mar 17 2020

A129430 Number of isomorphism classes of connected 5-regular multigraphs of order 2n, loops allowed.

Original entry on oeis.org

3, 26, 639, 40264, 5846105, 1620621150, 752480161278, 538934691750368, 562620407713724992, 820458681175954269942, 1616087981640640784235446, 4183688192689449962777539596, 13914233045360143936837907106395, 58319096569220501055727735345999221
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Formula

Inverse Euler transform of A129431. - Andrew Howroyd, Mar 19 2020

Extensions

a(8)-a(14) added by Andrew Howroyd, Mar 21 2020

A129420 Number of isomorphism classes of 5-regular loopless multigraphs of order 2n.

Original entry on oeis.org

1, 5, 54, 1753, 189341, 46935710, 20494522535, 14041749098602, 14155266802426836, 20061744131278672638, 38587417589460488631726, 97900485588988429336271590, 320012505326477694925887757141, 1321269556386383657509085883067690, 6775074159053505093089897813890701467
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Formula

Euler transform of A129419. - Andrew Howroyd, Mar 17 2020

Extensions

a(8)-a(15) from Andrew Howroyd, Mar 21 2020

A129423 Number of isomorphism classes of connected 7-regular loopless multigraphs of order 2n.

Original entry on oeis.org

1, 7, 263, 90614, 165041329, 861723619902, 10351918806321621, 253216618556625008961, 11542463442106815907796586, 915449471830886733265105097578
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129424. - Andrew Howroyd, Mar 21 2020

Extensions

a(7)-a(10) from Andrew Howroyd, Mar 21 2020
Showing 1-9 of 9 results.