cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A006821 Number of connected regular graphs of degree 5 (or quintic graphs) with 2n nodes.

Original entry on oeis.org

1, 0, 0, 1, 3, 60, 7848, 3459383, 2585136675, 2807105250897, 4221456117363365, 8516994770090547979, 22470883218081146186209, 75883288444204588922998674, 322040154704144697047052726990
Offset: 0

Views

Author

Keywords

Examples

			a(0)=1 because the null graph (with no vertices) is vacuously 5-regular and connected.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 648.
  • I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
5-regular simple graphs: this sequence (connected), A165655 (disconnected), A165626 (not necessarily connected).
Connected regular simple graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), this sequence (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 5-regular simple graphs with girth at least g: this sequence (g=3), A058275 (g=4), A205295 (g=5).
Connected 5-regular simple graphs with girth exactly g: A184953 (g=3), A184954 (g=4), A184955 (g=5).
Connected 5-regular graphs: A129430 (loops and multiple edges allowed), A129419 (no loops but multiple edges allowed), this sequence (no loops nor multiple edges). (End)

Formula

a(n) = A184953(n) + A058275(n).
a(n) = A165626(n) - A165655(n).
Inverse Euler transform of A165626.

Extensions

By running M. Meringer's GENREG for about 2 processor years at U. Newcastle, a(9) was found by Jason Kimberley, Nov 24 2009
a(10)-a(14) from Andrew Howroyd, Mar 10 2020

A005967 Number of isomorphism classes of connected 3-regular multigraphs of order 2n, loops allowed.

Original entry on oeis.org

2, 5, 17, 71, 388, 2592, 21096, 204638, 2317172, 30024276, 437469859, 7067109598, 125184509147, 2410455693765, 50101933643655, 1117669367609605, 26629298567576331, 674793598023809924, 18119844622209998036
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of maximal cells in the moduli space of tropical curves of genus n+1; see Melody Chan (2012) reference. a(n) is also the number of maximally degenerate stable nodal algebraic curves of genus n+1, up to isomorphism, by the association of a stable nodal curve to its dual graph. - Harry Richman, Oct 23 2023

References

  • A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A333397.
Cf. A129427 (Euler transf.), A000421 (no loops), A085549, A129430, A129432, A129434, A129436.

Formula

Inverse Euler transform of A129427.

Extensions

Checked by Brendan McKay, Apr 15 2007
Using sequence A129427, terms a(12)-a(16) were computed in GAP by Ignat Soroko, Apr 07 2010
a(17)-a(19) added by Andrew Howroyd, Mar 19 2020

A085549 Number of isomorphism classes of connected 4-regular multigraphs of order n, loops allowed.

Original entry on oeis.org

1, 2, 4, 10, 28, 97, 359, 1635, 8296, 48432, 316520, 2305104, 18428254, 160384348, 1506613063, 15180782537, 163211097958, 1864251304892, 22540603640086, 287577260214946, 3860595341568062, 54397355465967057, 802684717378090204
Offset: 1

Views

Author

Benjamin A. Burton (bab(AT)debian.org), Jul 04 2003

Keywords

Comments

Also the number of different potential face pairing graphs for closed 3-manifold triangulations.
Computed from A129429 by an inverse Euler transform. - R. J. Mathar, Mar 09 2019

References

  • B. A. Burton, Minimal triangulations and face pairing graphs, preprint, 2003.

Crossrefs

Programs

  • Mathematica
    A129429 = Cases[Import["https://oeis.org/A129429/b129429.txt", "Table"], {, }][[All, 2]];
    (* EulerInvTransform is defined in A022562 *)
    EulerInvTransform[A129429] (* Jean-François Alcover, Dec 03 2019, updated Mar 17 2020 *)

Formula

Inverse Euler transform of A129429.

Extensions

a(12)-a(16) from Brendan McKay, Apr 15 2007, computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
Edited by N. J. A. Sloane, Oct 01 2007
a(17)-a(23) from A129429 from Jean-François Alcover, Dec 03 2019

A129419 Number of isomorphism classes of connected 5-regular loopless multigraphs of order 2n.

Original entry on oeis.org

1, 4, 49, 1689, 187392, 46738368, 20446754006, 14021056991357, 14141140657400321, 20047531681346319557, 38567298550226625579671, 97861817259606311572409609, 319914449561753621623849929222, 1320949150506412557504787822889933, 6773751604973857152218372443743552754
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Programs

Formula

Inverse Euler transform of A129420. - Andrew Howroyd, Mar 17 2020

Extensions

a(8)-a(15) from Andrew Howroyd, Mar 21 2020

A333397 Array read by antidiagonals: T(n,k) is the number of connected k-regular multigraphs on n unlabeled nodes, loops allowed, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 1, 3, 4, 5, 1, 0, 0, 1, 0, 3, 0, 10, 0, 1, 0, 0, 1, 1, 4, 9, 26, 28, 17, 1, 0, 0, 1, 0, 4, 0, 47, 0, 97, 0, 1, 0, 0, 1, 1, 5, 17, 91, 291, 639, 359, 71, 1, 0, 0, 1, 0, 5, 0, 149, 0, 2789, 0, 1635, 0, 1, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Mar 18 2020

Keywords

Comments

This sequence can be derived from A167625 by inverse Euler transform.

Examples

			Array begins:
=========================================================
n\k | 0 1 2  3    4     5        6       7          8
----+----------------------------------------------------
  0 | 1 1 1  1    1     1        1       1          1 ...
  1 | 1 0 1  0    1     0        1       0          1 ...
  2 | 0 1 1  2    2     3        3       4          4 ...
  3 | 0 0 1  0    4     0        9       0         17 ...
  4 | 0 0 1  5   10    26       47      91        149 ...
  5 | 0 0 1  0   28     0      291       0       1934 ...
  6 | 0 0 1 17   97   639     2789   12398      44821 ...
  7 | 0 0 1  0  359     0    35646       0    1631629 ...
  8 | 0 0 1 71 1635 40264   622457 8530044   89057367 ...
  9 | 0 0 1  0 8296     0 14019433       0 6849428873 ...
  ...
		

Crossrefs

Columns k=3..8 (with interspersed 0's for odd k) are: A005967, A085549, A129430, A129432, A129434, A129436.
Cf. A167625 (not necessarily connected), A322115 (not necessarily regular), A328682 (loopless), A333330.

Formula

Column k is the inverse Euler transform of column k of A167625.

A129431 Number of isomorphism classes of 5-regular multigraphs of order 2n, loops allowed.

Original entry on oeis.org

3, 32, 727, 42703, 5988679, 1639714425, 757559332934, 541249158493444, 564262722366313620, 822164422526588575949, 1618567795242262158194706, 4188563149202582371775198174, 13926836449718334345103644635724, 58360974360850795591633858610837541
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

First seven terms were computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Formula

a(n) = N\{S_{2n}[S_5] * S_{5n}[S_2]\}. - Jason Kimberley, Oct 05 2009
Euler transform of A129430. - Andrew Howroyd, Mar 15 2020

Extensions

Using equation (5.8) of Read 1959, new terms a(8)-a(10) were computed in MAGMA during 2009 by Jason Kimberley, Dec 22 2010
a(11)-a(14) from Andrew Howroyd, Mar 21 2020

A129432 Number of isomorphism classes of connected 6-regular multigraphs of order n, loops allowed.

Original entry on oeis.org

1, 3, 9, 47, 291, 2789, 35646, 622457, 14019433, 395208047, 13561118011, 555498075986, 26751985389463, 1496090275853092, 96154662330195078, 7038800665162854369, 582281978355495520076, 54057819690711609171892, 5597375885970846586170796, 642829784413912305507730345
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Formula

Inverse Euler transform of A129433. - Andrew Howroyd, Mar 19 2020

Extensions

a(13)-a(20) added by Andrew Howroyd, Mar 19 2020

A129434 Number of isomorphism classes of connected 7-regular multigraphs of order 2n, loops allowed.

Original entry on oeis.org

4, 91, 12398, 8530044, 20068725095, 122563246940846, 1657847267734501346, 44557979504639651662163, 2193071655191529316254072193, 185380797361862371952777763438426
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Formula

Inverse Euler transform of A129435. - Andrew Howroyd, Mar 19 2020

Extensions

a(6)-a(10) added by Andrew Howroyd, Mar 21 2020

A129436 Number of isomorphism classes of connected 8-regular multigraphs of order n, loops allowed.

Original entry on oeis.org

1, 4, 17, 149, 1934, 44821, 1631629, 89057367, 6849428873, 713780361312, 97876276145119, 17259548258350637, 3840154740252625874, 1060662127742505706789, 358584059544008234423217, 146560585570176100774010071, 71630591614693085251230481320, 41456445821273701849195905028292
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Formula

Inverse Euler transform of A129437. - Andrew Howroyd, Mar 19 2020

Extensions

a(11)-a(18) added by Andrew Howroyd, Mar 21 2020
Showing 1-9 of 9 results.