cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A006820 Number of connected regular simple graphs of degree 4 (or quartic graphs) with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 2, 6, 16, 59, 265, 1544, 10778, 88168, 805491, 8037418, 86221634, 985870522, 11946487647, 152808063181, 2056692014474, 29051272833609, 429668180677439, 6640165204855036, 107026584471569605, 1796101588825595008, 31333997930603283531, 567437240683788292989
Offset: 0

Views

Author

Keywords

Comments

The null graph on 0 vertices is vacuously connected and 4-regular. - Jason Kimberley, Jan 29 2011
The Multiset Transform of this sequence gives a triangle which gives in row n and column k the 4-regular simple graphs with n>=1 nodes and k>=1 components (row sums A033301), starting:
;
;
;
;
1 ;
1 ;
2 ;
6 ;
16 ;
59 1 ;
265 1 ;
1544 3 ;
10778 8 ;
88168 25 ;
805491 87 1 ;
8037418 377 1 ;
86221634 2023 3 ;
985870522 13342 9 ;
11946487647 104568 27 ;
152808063181 930489 96 1 ; - R. J. Mathar, Jun 02 2022

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 648.
  • I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

From Jason Kimberley, Mar 27 2010 and Jan 29 2011: (Start)
4-regular simple graphs: this sequence (connected), A033483 (disconnected), A033301 (not necessarily connected).
Connected regular simple graphs: A005177 (any degree), A068934 (triangular array); specified degree k: A002851 (k=3), this sequence (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 4-regular simple graphs with girth at least g: this sequence (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: A184943 (g=3), A184944 (g=4), A184945 (g=5).
Connected 4-regular graphs: this sequence (simple), A085549 (multigraphs with loops allowed), A129417 (multigraphs with loops verboten). (End)

Formula

a(n) = A184943(n) + A033886(n).
a(n) = A033301(n) - A033483(n).
Inverse Euler transform of A033301.
Row sums of A184940. - R. J. Mathar, May 30 2022

Extensions

a(19)-a(22) were appended by Jason Kimberley on Sep 04 2009, Nov 24 2009, Mar 27 2010, and Mar 18 2011, from running M. Meringer's GENREG for 3.4, 44, and 403 processor days, and 15.5 processor years, at U. Ncle.
a(22) corrected and a(23)-a(28) from Andrew Howroyd, Mar 10 2020

A005967 Number of isomorphism classes of connected 3-regular multigraphs of order 2n, loops allowed.

Original entry on oeis.org

2, 5, 17, 71, 388, 2592, 21096, 204638, 2317172, 30024276, 437469859, 7067109598, 125184509147, 2410455693765, 50101933643655, 1117669367609605, 26629298567576331, 674793598023809924, 18119844622209998036
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of maximal cells in the moduli space of tropical curves of genus n+1; see Melody Chan (2012) reference. a(n) is also the number of maximally degenerate stable nodal algebraic curves of genus n+1, up to isomorphism, by the association of a stable nodal curve to its dual graph. - Harry Richman, Oct 23 2023

References

  • A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A333397.
Cf. A129427 (Euler transf.), A000421 (no loops), A085549, A129430, A129432, A129434, A129436.

Formula

Inverse Euler transform of A129427.

Extensions

Checked by Brendan McKay, Apr 15 2007
Using sequence A129427, terms a(12)-a(16) were computed in GAP by Ignat Soroko, Apr 07 2010
a(17)-a(19) added by Andrew Howroyd, Mar 19 2020

A129429 Number of isomorphism classes of 4-regular multigraphs of order n, loops allowed.

Original entry on oeis.org

1, 3, 7, 20, 56, 187, 654, 2705, 12587, 67902, 417065, 2897432, 22382255, 189930004, 1750561160, 17380043136, 184653542135, 2088649831822, 25046462480066, 317295911519901, 4233450347175663, 59329632953577985, 871281036897298464
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
Equation (5.8) of Read's paper tells us a(n) = N {S_n[S_4] * S_{2n}[S_2]}, where we are working with cycle index polynomials. - Jason Kimberley, Oct 05 2009

Crossrefs

Column k=4 of A167625.

Formula

Euler transform of A085549. - Andrew Howroyd, Mar 15 2020

Extensions

Using equation (5.8) of Read's paper, new terms a(17)-a(19) were computed in MAGMA by Jason Kimberley, Oct 05 2009
Four more terms a(20)-a(23) also computed by Jason Kimberley, Nov 09 2009

A129417 Number of isomorphism classes of connected 4-regular loopless multigraphs of order n.

Original entry on oeis.org

1, 0, 1, 1, 3, 6, 19, 50, 204, 832, 4330, 25227, 171886, 1303725, 10959478, 100230117, 989280132, 10455393155, 117701173970, 1405165683359, 17726785643045, 235585551038117, 3289367315407521, 48136794098893837, 736721822918719557, 11768987500655142988
Offset: 0

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
Obtained from A129418 by an inverse Euler transform. - R. J. Mathar, Mar 09 2019

Crossrefs

Programs

Extensions

a(0)-a(1) prepended by Natan Arie Consigli, Jun 05 2017
a(18)-a(25) from Andrew Howroyd, Mar 17 2020

A129430 Number of isomorphism classes of connected 5-regular multigraphs of order 2n, loops allowed.

Original entry on oeis.org

3, 26, 639, 40264, 5846105, 1620621150, 752480161278, 538934691750368, 562620407713724992, 820458681175954269942, 1616087981640640784235446, 4183688192689449962777539596, 13914233045360143936837907106395, 58319096569220501055727735345999221
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Formula

Inverse Euler transform of A129431. - Andrew Howroyd, Mar 19 2020

Extensions

a(8)-a(14) added by Andrew Howroyd, Mar 21 2020

A333397 Array read by antidiagonals: T(n,k) is the number of connected k-regular multigraphs on n unlabeled nodes, loops allowed, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 1, 3, 4, 5, 1, 0, 0, 1, 0, 3, 0, 10, 0, 1, 0, 0, 1, 1, 4, 9, 26, 28, 17, 1, 0, 0, 1, 0, 4, 0, 47, 0, 97, 0, 1, 0, 0, 1, 1, 5, 17, 91, 291, 639, 359, 71, 1, 0, 0, 1, 0, 5, 0, 149, 0, 2789, 0, 1635, 0, 1, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Mar 18 2020

Keywords

Comments

This sequence can be derived from A167625 by inverse Euler transform.

Examples

			Array begins:
=========================================================
n\k | 0 1 2  3    4     5        6       7          8
----+----------------------------------------------------
  0 | 1 1 1  1    1     1        1       1          1 ...
  1 | 1 0 1  0    1     0        1       0          1 ...
  2 | 0 1 1  2    2     3        3       4          4 ...
  3 | 0 0 1  0    4     0        9       0         17 ...
  4 | 0 0 1  5   10    26       47      91        149 ...
  5 | 0 0 1  0   28     0      291       0       1934 ...
  6 | 0 0 1 17   97   639     2789   12398      44821 ...
  7 | 0 0 1  0  359     0    35646       0    1631629 ...
  8 | 0 0 1 71 1635 40264   622457 8530044   89057367 ...
  9 | 0 0 1  0 8296     0 14019433       0 6849428873 ...
  ...
		

Crossrefs

Columns k=3..8 (with interspersed 0's for odd k) are: A005967, A085549, A129430, A129432, A129434, A129436.
Cf. A167625 (not necessarily connected), A322115 (not necessarily regular), A328682 (loopless), A333330.

Formula

Column k is the inverse Euler transform of column k of A167625.

A129432 Number of isomorphism classes of connected 6-regular multigraphs of order n, loops allowed.

Original entry on oeis.org

1, 3, 9, 47, 291, 2789, 35646, 622457, 14019433, 395208047, 13561118011, 555498075986, 26751985389463, 1496090275853092, 96154662330195078, 7038800665162854369, 582281978355495520076, 54057819690711609171892, 5597375885970846586170796, 642829784413912305507730345
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Formula

Inverse Euler transform of A129433. - Andrew Howroyd, Mar 19 2020

Extensions

a(13)-a(20) added by Andrew Howroyd, Mar 19 2020

A129434 Number of isomorphism classes of connected 7-regular multigraphs of order 2n, loops allowed.

Original entry on oeis.org

4, 91, 12398, 8530044, 20068725095, 122563246940846, 1657847267734501346, 44557979504639651662163, 2193071655191529316254072193, 185380797361862371952777763438426
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Formula

Inverse Euler transform of A129435. - Andrew Howroyd, Mar 19 2020

Extensions

a(6)-a(10) added by Andrew Howroyd, Mar 21 2020

A129436 Number of isomorphism classes of connected 8-regular multigraphs of order n, loops allowed.

Original entry on oeis.org

1, 4, 17, 149, 1934, 44821, 1631629, 89057367, 6849428873, 713780361312, 97876276145119, 17259548258350637, 3840154740252625874, 1060662127742505706789, 358584059544008234423217, 146560585570176100774010071, 71630591614693085251230481320, 41456445821273701849195905028292
Offset: 1

Views

Author

Brendan McKay, Apr 15 2007

Keywords

Comments

Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/

Crossrefs

Formula

Inverse Euler transform of A129437. - Andrew Howroyd, Mar 19 2020

Extensions

a(11)-a(18) added by Andrew Howroyd, Mar 21 2020

A361135 The number of unlabeled connected fairly 4-regular multigraphs of order n, loops allowed.

Original entry on oeis.org

1, 3, 8, 30, 118, 548, 2790, 16029, 101353, 706572, 5375249, 44402094, 395734706, 3786401086, 38711834576, 421217184135, 4860174299186, 59278045511959, 762055884150141, 10299293881159294, 145994591873294780, 2165938721141964179, 33564939201581495090, 542344644703485899950, 9122110321170144880053
Offset: 1

Views

Author

R. J. Mathar, Mar 02 2023

Keywords

Comments

Edges are undirected, vertices not labeled. "Fairly" means that each vertex has degree 4, but two of these edges do not connect to a second vertex; they are "fins" in CAD speak or "half-edges" in perturbation theory. The two fins may be attached to the same or to two different nodes. In the usual mathematical nomenclature these are connected graphs of order n+2 with two vertices of degree 1 and n vertices of degree 4, loops allowed.

Crossrefs

Cf. A085549 (4-regular), A352174 (assuming rooted external legs).

Extensions

Terms a(7) and beyond from Andrew Howroyd, Mar 05 2023
Showing 1-10 of 11 results. Next