cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034275 a(n) = f(n,n-2) where f is given in A034261.

Original entry on oeis.org

1, 3, 14, 65, 294, 1302, 5676, 24453, 104390, 442442, 1864356, 7818538, 32657884, 135950700, 564306840, 2336457645, 9652643910, 39800950530, 163830074100, 673327275390, 2763494696820, 11327881630260, 46381659765480, 189711966348450, 775232392541724, 3165127107345252
Offset: 1

Views

Author

Keywords

Comments

Divisible by the Catalan numbers, by the explicit formula. - F. Chapoton, Jun 24 2021

Crossrefs

Programs

  • Mathematica
    a[n_] := Binomial[2*n-2,n-1] * (n^2-n+1) / n; Array[a, 25] (* Amiram Eldar, Sep 04 2025 *)
  • PARI
    a(n) = binomial(2*n-2,n-1)/n * (n^2-n+1); \\ Michel Marcus, Jun 24 2021
  • Sage
    [binomial(2*n-2,n-1)//n * (n**2-n+1) for n in range(1,8)]
    

Formula

a(n) = binomial(2*n-2,n-1)/n * (n^2-n+1).
a(n) = binomial(2*n-2,n-1) + (n-1)*binomial(2*n-2,n).
D-finite with recurrence n*a(n) + 2*(-6*n+7)*a(n-1) + 4*(11*n-24)*a(n-2) + 24*(-2*n+7)*a(n-3) = 0. - R. J. Mathar, Feb 10 2025
a(n) ~ 2^(2*n-2) * sqrt(n/Pi). - Amiram Eldar, Sep 04 2025

Extensions

Corrected and extended by N. J. A. Sloane, Apr 21 2000