cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034428 E.g.f.: 1 - (1-x)*(tan(x) + sec(x)).

Original entry on oeis.org

0, 0, 1, 1, 3, 9, 35, 155, 791, 4529, 28839, 201939, 1542739, 12767689, 113794603, 1086657403, 11068604847, 119790363489, 1372696498127, 16603828720547, 211406514019115, 2826296899863929, 39584082775592211, 579600224535319371
Offset: 0

Views

Author

Keywords

Comments

Also: number of permutations on n elements having the descent pattern: up, up, down, up, down, ...; a(n) = n * E_{n-1} - E_{n} where E_{n} denotes the Euler numbers, see sequence A000111. - Richard Ehrenborg, Feb 12 2002

References

  • R. Ehrenborg and S. Mahajan, Maximizing the descent statistic, Annals Combin., 2 (1998), no. 2, 111-129.

Crossrefs

Essentially the same as A131281(n)/2.

Programs

  • Mathematica
    With[{nn=30},Drop[CoefficientList[Series[1-(1-x)(Tan[x]+Sec[x]),{x,0,nn}], x]Range[0,nn]!,2]] (* Harvey P. Dale, Jan 22 2012 *)
  • PARI
    a(n)=n!*polcoeff(1-(1-x)*(tan(x+x*O(x^n))+1/cos(x+x*O(x^n))),n)

Formula

E.g.f.: 1 - (1-x)*(tan(x) + sec(x)).
E.g.f.: E(x) = x + x*(x-1)/U(0) where U(k) = 4k + 1 - x/(2 - x/(4k + 3 + x/(2 + x/U(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2012
E.g.f.: x + 2*x*(x-1)/(U(0)-x) where U(k) = 4*k+2 - x^2/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 31 2013
a(n) ~ n!*(2 - 4/Pi)*(2/Pi)^n. - Vaclav Kotesovec, Jun 01 2013