cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A131281 Expansion of e.g.f.: 2*(x-1)*tan(x/2+Pi/4)-x^2+2.

Original entry on oeis.org

0, 0, 0, 2, 6, 18, 70, 310, 1582, 9058, 57678, 403878, 3085478, 25535378, 227589206, 2173314806, 22137209694, 239580726978, 2745392996254, 33207657441094, 422813028038230, 5652593799727858, 79168165551184422, 1159200449070638742, 17711278225214739086
Offset: 0

Views

Author

N. J. A. Sloane, Oct 30 2007

Keywords

Crossrefs

Essentially the same as 2*A034428.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[2(x-1)Tan[x/2+Pi/4]-x^2+2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 11 2023 *)

Formula

E.g.f. E(x)=2*(x-1)*tan(x/2+Pi/4)-x^2+2 = 2*x - x^2 + 4*x*(x-1)/(Q(0)-x) where Q(k) = 4*k + 2 - x^2/Q(k+1); (continued fraction, 1-step).- Sergei N. Gladkovskii, Jun 22 2012
a(n) ~ n! * 2^(n + 2) * (Pi - 2) / Pi^(n + 1). - Vaclav Kotesovec, Mar 12 2019

Extensions

Definition clarified by Harvey P. Dale, Jun 11 2023

A131656 Principal number of K. Saito for tree of type E_n.

Original entry on oeis.org

-1, 3, 0, 3, 5, 18, 66, 298, 1511, 8670, 55168, 386394, 2951673, 24428654, 217723390, 2079109386, 21177620171, 229195610430, 2626388037372, 31768201320634, 404485298533085, 5407570127090958, 75736453324821754, 1108952444876609898, 16943545270848408495
Offset: 0

Views

Author

N. J. A. Sloane, Oct 30 2007

Keywords

Crossrefs

Same as A131611 except for leading terms. Cf. A000111, A131281, A034428.

A172170 1 followed by the duplicated entries of A090368.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 5, 7, 7, 3, 3, 11, 11, 13, 13, 3, 3, 17, 17, 19, 19, 3, 3, 23, 23, 5, 5, 3, 3, 29, 29, 31, 31, 3, 3, 5, 5, 37, 37, 3, 3, 41, 41, 43, 43, 3, 3, 47, 47, 7, 7, 3, 3, 53, 53, 5, 5, 3, 3, 59, 59, 61, 61, 3, 3, 5, 5, 67, 67, 3, 3, 71, 71, 73, 73, 3, 3, 7, 7, 79, 79, 3, 3, 83, 83, 5, 5
Offset: 0

Views

Author

Paul Curtz, Jan 28 2010

Keywords

Comments

We start from the expansion tan(x)+sec(x) = sum_{n>=1} A099612(n)/A099617(n) * x^n with Taylor coefficients 1, 1, 1/2, 1/3, 5/24, 2/15,...
The first differences of this sequence of fractions are 0, -1/2, -1/6, -1/8, -3/40, -7/144, -31/1008, -113/5760,... which is 0 followed by the negated ratios A034428(n)/(n+1)! = 0, -1/2, -1/6, -3/24, -9/120,....
(The factorial follows because A034428 is obtained by multiplying with 1-x to generate first differences of the o.g.f. and then moving on to the e.g.f.)
The common multiple to reduce numerator and denominator of A034428(n)/A000142(n+1) to the standard coprime representation is this sequence here.

Formula

a(2n+1)=a(2n+2) = A090368(n), n>=0.

A211182 E.g.f. 1-x*(1-x)*(tan(x)+sec(x)).

Original entry on oeis.org

1, -1, 0, 3, 4, 15, 54, 245, 1240, 7119, 45290, 317229, 2423268, 20055607, 178747646, 1706919045, 17386518448, 188166282399, 2156226542802, 26081233464413, 332076574410940, 4439536794401415, 62178531797006438, 910433903838620853, 13910405388847664904
Offset: 0

Views

Author

LtC. R. Scott Patterson (aa737drvr(AT)comcast.net) and Robert G. Wilson v, Feb 02 2013

Keywords

Crossrefs

Cf. A034428.

Programs

  • Mathematica
    With[{nn = 24}, CoefficientList[ Series[1 - x (1 - x) (Tan[x] + Sec[x]), {x, 0, nn}], x] Range[0, nn]!]
    Join[{1, -1, 0}, Table[-n * (((n-1)*EulerE[n-2] + 2^(n-1)*EulerE[n-1, 0]) * Cos[Pi*n/2] + (EulerE[n-1] - 2^(n-2)*(n-1)*EulerE[n-2, 0]) * Sin[Pi*n/2]), {n, 3, 30}]] (* Benedict W. J. Irwin, Jul 28 2016 *)

Formula

a(n) ~ n! * (Pi-2)*2^n/Pi^n. - Vaclav Kotesovec, Feb 12 2013

A337443 E.g.f.: (1 + x) * exp(x) / (sec(x) + tan(x)).

Original entry on oeis.org

1, 1, 0, -1, -4, -5, -20, 9, -208, 855, -6180, 41549, -321792, 2651155, -23664420, 225865769, -2301032256, 24901626095, -285356879940, 3451591584869, -43947119045600, 587529302036875, -8228722825167940, 120487046847246049, -1840906518665985824
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 27 2020

Keywords

Comments

Inverse boustrophedon transform of positive natural numbers.

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[(1 + x) Exp[x]/(Sec[x] + Tan[x]), {x, 0, nmax}], x] Range[0, nmax]!
    t[n_, 0] := n + 1; t[n_, k_] := t[n, k] = t[n, k - 1] - t[n - 1, n - k]; a[n_] := t[n, n]; Table[a[n], {n, 0, 24}]
  • Python
    from itertools import count, islice, accumulate
    from operator import sub
    def A337443_gen(): # generator of terms
        blist = tuple()
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),func=sub,initial=i)))[-1]
    A337443_list = list(islice(A337443_gen(),30)) # Chai Wah Wu, Jun 11 2022

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * (k+1) * A000111(n-k).
Showing 1-5 of 5 results.