cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A241029 Sum of n-th powers of divisors of 22.

Original entry on oeis.org

4, 36, 610, 11988, 248914, 5314716, 115151530, 2513845188, 55090232674, 1209627165996, 26585860217050, 584603613083988, 12858141059430034, 282844580595234876, 6222201023261420170, 136884245263581500388, 3011407446068928780994
Offset: 0

Views

Author

Vincenzo Librandi, Apr 17 2014

Keywords

Crossrefs

Cf. sum of n-th powers of divisors of even k: A000051 (k=2), A001576 (k=4), A034488 (k=6), A034496 (k=8), A034517 (k=10), A034660 (k=12), A141013 (k=14), A020514 (k=16), A034661 (k=18), A034662 (k=20), this sequence (k=22), A034664 (k=24), A241030 (k=26), A241031 (k=28), A241032 (k=30), A034665 (k=32), A034666 (k=36), A034667 (k=40), A034668 (k=48), A034669 (k=56), A020516 (k=64), A034671 (k=72), A034672 (k=96), A034673 (k=120), A034674 (k=128), A034675 (k=144).

Programs

  • Magma
    [DivisorSigma(n, 22): n in [0..20]];
    
  • Mathematica
    Total[#^Range[0, 20]&/@Divisors[22]]
    Table[(1 + 2^n) (1 + 11^n), {n, 0, 20}] (* Bruno Berselli, Apr 17 2014 *)
    LinearRecurrence[{36,-343,792,-484},{4,36,610,11988},30] (* Harvey P. Dale, May 21 2014 *)
  • Maxima
    makelist((1+2^n)*(1+11^n), n, 0, 20); /* Bruno Berselli, Apr 17 2014 */

Formula

G.f.: 2*(2 - 54*x + 343*x^2 - 396*x^3)/((1 - x)*(1 - 2*x)*(1 - 11*x)*(1 - 22*x)). [Bruno Berselli, Apr 17 2014]
a(n) = (1 + 2^n)*(1 + 11^n). [Bruno Berselli, Apr 17 2014]

A224384 a(n) = 1 + 17^n.

Original entry on oeis.org

2, 18, 290, 4914, 83522, 1419858, 24137570, 410338674, 6975757442, 118587876498, 2015993900450, 34271896307634, 582622237229762, 9904578032905938, 168377826559400930, 2862423051509815794, 48661191875666868482, 827240261886336764178, 14063084452067724991010
Offset: 0

Views

Author

Philippe Deléham, Apr 05 2013

Keywords

Comments

Sum of n-th powers of divisors of 17.

Crossrefs

Programs

Formula

a(n) = A001026(n) + 1.
G.f.: 1/(1-x) + 1/(1-17*x).
E.g.f.: exp(x) + exp(17*x).
a(n) = 18*a(n-1) - 17*a(n-2) with a(0) = 2, a(1) = 18.
Showing 1-2 of 2 results.