A034679 Sum of fifth powers of unitary divisors.
1, 33, 244, 1025, 3126, 8052, 16808, 32769, 59050, 103158, 161052, 250100, 371294, 554664, 762744, 1048577, 1419858, 1948650, 2476100, 3204150, 4101152, 5314716, 6436344, 7995636, 9765626, 12252702, 14348908, 17228200, 20511150, 25170552
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Total[Select[Divisors[n], CoprimeQ[#, n/#] &]^5], {n, 1, 50}] (* Vaclav Kotesovec, Feb 07 2019 *) a[1] = 1; a[n_] := Times @@ (1 + First[#]^(5*Last[#]) & /@ FactorInteger[n]); s = Array[a, 50] (* Amiram Eldar, Aug 10 2019 *)
Formula
Dirichlet g.f.: zeta(s)*zeta(s-5)/zeta(2s-5). - R. J. Mathar, Apr 12 2011
If n = Product (p_j^k_j) then a(n) = Product (1 + p_j^(5*k_j)). - Ilya Gutkovskiy, Nov 04 2018
Sum_{k=1..n} a(k) ~ (Pi*n)^6 / (5670*Zeta(7)). - Vaclav Kotesovec, Feb 07 2019