cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034681 Sum of seventh powers of unitary divisors.

Original entry on oeis.org

1, 129, 2188, 16385, 78126, 282252, 823544, 2097153, 4782970, 10078254, 19487172, 35850380, 62748518, 106237176, 170939688, 268435457, 410338674, 617003130, 893871740, 1280094510, 1801914272, 2513845188, 3404825448
Offset: 1

Views

Author

Keywords

Crossrefs

Row n=7 of A286880.

Programs

  • Mathematica
    Table[Total[Select[Divisors[n], CoprimeQ[#, n/#] &]^7], {n, 1, 50}] (* Vaclav Kotesovec, Feb 07 2019 *)
    a[1] = 1; a[n_] := Times @@ (1 + First[#]^(7*Last[#]) & /@ FactorInteger[n]); s = Array[a, 50] (* Amiram Eldar, Aug 10 2019 *)

Formula

Dirichlet g.f.: zeta(s)*zeta(s-7)/zeta(2s-7). - R. J. Mathar, Apr 12 2011
If n = Product (p_j^k_j) then a(n) = Product (1 + p_j^(7*k_j)). - Ilya Gutkovskiy, Nov 04 2018
Sum_{k=1..n} a(k) ~ (Pi*n)^8 / (75600*Zeta(9)). - Vaclav Kotesovec, Feb 07 2019