A034683 Unitary abundant numbers: numbers k such that usigma(k) > 2*k.
30, 42, 66, 70, 78, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822, 834
Offset: 1
Keywords
References
- C. Sung, Mathematical Buds, "Unitary Divisors", Chap. V, pp. 42-67, Ed. H. D. Ruderman, Mu Alpha Theta OK 1978.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
- Charles Robert Wall, Topics related to the sum of unitary divisors of an integer, Ph.D. diss., University of Tennessee, 1970.
Crossrefs
Programs
-
Maple
isA034683 := proc(n) is(A034448(n) > 2*n) ; end proc: for n from 1 do if isA034683(n) then print(n); end if; end do: # R. J. Mathar, Nov 10 2014
-
Mathematica
usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; Select[Range[1000], usigma[#] > 2#&] (* Jean-François Alcover, Mar 23 2020, after Giovanni Resta in A034448 *)
-
PARI
is(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]) > 2*n;} \\ Amiram Eldar, Apr 18 2024
Comments