cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034683 Unitary abundant numbers: numbers k such that usigma(k) > 2*k.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822, 834
Offset: 1

Views

Author

Keywords

Comments

If a term n in the sequence ends in neither 0 nor 5, then 10*n is also in the sequence. - Lekraj Beedassy, Jun 11 2004
The lower asymptotic density of this sequence is larger than 1/18 = 0.0555... which is the density of its subsequence of numbers of the form 6*m where gcd(m, 6) = 1 and m > 1. Numerically, based on counts of terms below 10^n (A302993), it seems that this sequence has an asymptotic density which equals to about 0.070034... - Amiram Eldar, Feb 13 2021
The asymptotic density of this sequence is in the interval (0.0674, 0.1055) (Wall, 1970). - Amiram Eldar, Apr 18 2024
All the terms are nonpowerful numbers (A052485). For powerful numbers (A001694) k, usigma(k)/k < 15/Pi^2 = 1.519817... (A082020; the record values are attained at the squares of primorials, A061742). - Amiram Eldar, Jul 20 2024

References

  • C. Sung, Mathematical Buds, "Unitary Divisors", Chap. V, pp. 42-67, Ed. H. D. Ruderman, Mu Alpha Theta OK 1978.

Crossrefs

Subsequence of A005101.

Programs

  • Maple
    isA034683 := proc(n)
        is(A034448(n) > 2*n) ;
    end proc:
    for n from 1 do
        if isA034683(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2014
  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
    Select[Range[1000], usigma[#] > 2#&] (* Jean-François Alcover, Mar 23 2020, after Giovanni Resta in A034448 *)
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]) > 2*n;} \\ Amiram Eldar, Apr 18 2024