cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034687 Related to quintic factorial numbers A008548.

Original entry on oeis.org

1, 15, 275, 5500, 115500, 2502500, 55412500, 1246781250, 28398906250, 653174843750, 15141780468750, 353308210937500, 8289154179687500, 195387205664062500, 4624163867382812500, 109823891850341796875
Offset: 1

Views

Author

Keywords

Comments

Convolution of A034688(n-1) with A025750(n), n >= 1.

Crossrefs

Programs

  • GAP
    List([1..20], n-> 5^(n-1)*Product([0..n-1], k-> 5*k+1)/Factorial(n)); # G. C. Greubel, Aug 17 2019
  • Magma
    [5^(n-1)*(&*[5*k+1: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    seq(5^(n-1)*(product(5*k+1, k = 0..n-1))/factorial(n), n = 1..20); # G. C. Greubel, Aug 17 2019
  • Mathematica
    Table[5^(2*n-1)*Pochhammer[1/5, n]/n!, {n, 20}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    vector(20, n, 5^(n-1)*prod(k=0, n-1, 5*k+1)/n!) \\ G. C. Greubel, Aug 17 2019
    
  • Sage
    [5^(n-1)*product(5*k+1 for k in (0..n-1))/factorial(n) for n in (1..20)] # G. C. Greubel, Aug 17 2019
    

Formula

a(n) = 5^(n-1)*A008548(n)/n!, where A008548(n) = (5*n-4)(!^5) = Product_{j=1..n} (5*j-4).
G.f.: (-1 + (1-25*x)^(-1/5))/5.
E.g.f.: (1/5)*L_{-1/5}(25*x) - 1, where L_{k}(x) is the Laguerre polynomial. - Stefano Spezia, Aug 17 2019
a(n) ~ 5^(2*n-1) * n^(-4/5) / Gamma(1/5). - Amiram Eldar, Aug 17 2025