cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034695 Tau_6 (the 6th Piltz divisor function), the number of ordered 6-factorizations of n; Dirichlet convolution of number-of-divisors function (A000005) with A007426.

Original entry on oeis.org

1, 6, 6, 21, 6, 36, 6, 56, 21, 36, 6, 126, 6, 36, 36, 126, 6, 126, 6, 126, 36, 36, 6, 336, 21, 36, 56, 126, 6, 216, 6, 252, 36, 36, 36, 441, 6, 36, 36, 336, 6, 216, 6, 126, 126, 36, 6, 756, 21, 126, 36, 126, 6, 336, 36, 336, 36, 36, 6, 756, 6, 36, 126, 462, 36, 216, 6, 126
Offset: 1

Views

Author

Keywords

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 29 and 38
  • Leveque, William J., Fundamentals of Number Theory. New York:Dover Publications, 1996, ISBN 9780486689067, p .167-Exercise 5.b.

Crossrefs

Cf. A000005 (tau_2), A007425 (tau_3), A007426 (tau_4), A061200 (tau_5).
Cf. A061204.
Column k=6 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 6], {n, 68}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 6], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, f[i,1] = binomial(f[i,2] + 5, f[i,2]); f[i,2]=1); factorback(f); \\ Michel Marcus, Jun 09 2014
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^6)[n]), ", ")) \\ Vaclav Kotesovec, May 06 2025
    
  • Python
    from math import prod, comb
    from sympy import factorint
    def A034695(n): return prod(comb(5+e,5) for e in factorint(n).values()) # Chai Wah Wu, Dec 22 2024

Formula

Dirichlet g.f.: zeta^6(s).
Multiplicative with a(p^e) = binomial(e+5, e). - Mitch Harris, Jun 27 2005
The Piltz divisor functions hold for tau_j(*)tau_k = tau_{j+k}, where (*) means Dirichlet convolution.
G.f.: Sum_{k>=1} tau_5(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018

Extensions

More terms from Robert G. Wilson v, Nov 02 2005