A034707 Numbers that are sums (of a nonempty sequence) of consecutive primes.
2, 3, 5, 7, 8, 10, 11, 12, 13, 15, 17, 18, 19, 23, 24, 26, 28, 29, 30, 31, 36, 37, 39, 41, 42, 43, 47, 48, 49, 52, 53, 56, 58, 59, 60, 61, 67, 68, 71, 72, 73, 75, 77, 78, 79, 83, 84, 88, 89, 90, 95, 97, 98, 100, 101, 102, 103, 107, 109, 112, 113, 119, 120, 121, 124, 127
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Leo Moser, On the Sum of Consecutive Primes. Canad. Math. Bull. 6 (1963), 159-161.
- Janyarak Tongsomporn, Saeree Wananiyaku, and Jörn Steuding, Sums of consecutive prime squares, Integers (2022) Vol. 22, #A9.
Programs
-
Mathematica
f[n_] := Block[{len = PrimePi@ n}, p = Prime@ Range@ len; Count[ Flatten[ Table[ p[[i ;; j]], {i, len}, {j, i, len}],1], q_ /; Total@ q == n]]; Select[ Range@ 1000, f@ # > 0 &] (* Or quicker for a larger range *) lmt = 10000; p = Prime@ Range@ PrimePi@ lmt; t = Table[0, {lmt}]; Do[s = 0; j = i; While[s = s + p[[j]]; s <= lmt, t[[s]]++; j++], {i, Length@ p}]; Select[ Range@ lmt, t[[#]] > 0 &] upto=200;Select[Union[Flatten[Table[ Total/@Partition[Prime[ Range[ PrimePi[ upto]]],n,1],{n,upto-1}]]],#<=upto&] (* Harvey P. Dale, Jul 15 2011 *)
-
PARI
is(n)=if(isprime(n), return(1)); my(v,m=1,t); while(1, v=vector(m++); v[m\2]=precprime(n\m); for(i=m\2+1,m,v[i]=nextprime(v[i-1]+1)); forstep(i=m\2-1,1,-1,v[i]=precprime(v[i+1]-1)); if(v[1]==0, return(0)); t=vecsum(v); if (t==n, return(1)); if(t>n, while(t>n, t-=v[m]; v=concat(precprime(v[1]-1), v[1..m-1]); t+=v[1]), while(t
Charles R Greathouse IV, May 05 2016
Formula
A054845(a(n)) > 0. - Ray Chandler, Sep 20 2023
Extensions
Updated a misleading comment. - R. J. Mathar, Oct 10 2010
Comments