cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034709 Numbers divisible by their last digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 21, 22, 24, 25, 31, 32, 33, 35, 36, 41, 42, 44, 45, 48, 51, 52, 55, 61, 62, 63, 64, 65, 66, 71, 72, 75, 77, 81, 82, 84, 85, 88, 91, 92, 93, 95, 96, 99, 101, 102, 104, 105, 111, 112, 115, 121, 122, 123, 124, 125, 126, 128, 131, 132
Offset: 1

Views

Author

Keywords

Comments

The differences between consecutive terms repeat with period 1177 and the corresponding terms differ by 2520 = LCM(1,2,...,9). In other words, a(k*1177+i) = 2520*k + a(i). - Giovanni Resta, Aug 20 2015
The asymptotic density of this sequence is 1177/2520 = 0.467063... (see A341431 and A341432 for the values in other base representations). - Amiram Eldar, Nov 24 2022

Crossrefs

Programs

  • Haskell
    import Data.Char (digitToInt)
    a034709 n = a034709_list !! (n-1)
    a034709_list =
       filter (\i -> i `mod` 10 > 0 && i `mod` (i `mod` 10) == 0) [1..]
    -- Reinhard Zumkeller, Jun 19 2011
    
  • Maple
    N:= 1000: # to get all terms <= N
    sort([seq(seq(ilcm(10,d)*x+d, x=0..floor((N-d)/ilcm(10,d))), d=1..9)]); # Robert Israel, Aug 20 2015
  • Mathematica
    dldQ[n_]:=Module[{idn=IntegerDigits[n],last1},last1=Last[idn]; last1!= 0&&Divisible[n,last1]]; Select[Range[150],dldQ]  (* Harvey P. Dale, Apr 25 2011 *)
    Select[Range[150],Mod[#,10]!=0&&Divisible[#,Mod[#,10]]&] (* Harvey P. Dale, Aug 07 2022 *)
  • PARI
    for(n=1,200,if(n%10,if(!(n%digits(n)[#Str(n)]),print1(n,", ")))) \\ Derek Orr, Sep 19 2014
  • Python
    A034709_list = [n for n in range(1, 1000) if n % 10 and not n % (n % 10)]
    # Chai Wah Wu, Sep 18 2014