A034715 Dirichlet convolution of triangular numbers with themselves.
1, 6, 12, 29, 30, 78, 56, 132, 126, 200, 132, 402, 182, 378, 420, 588, 306, 864, 380, 1050, 798, 902, 552, 1920, 875, 1248, 1296, 2002, 870, 2940, 992, 2592, 1914, 2108, 2100, 4635, 1406, 2622, 2652, 5080, 1722, 5628, 1892, 4818, 4860, 3818, 2256, 8856
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A000217.
Programs
-
Magma
A000217:=func; [&+[A000217(d)*A000217(n div d): d in Divisors(n)]: n in [1..50]]; // Bruno Berselli, Feb 11 2014
-
Mathematica
Table[n/4*Sum[(n+d)*(d+1)/d, {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 05 2019 *)
Formula
G.f.: Sum_{k>=1} (k*(k + 1)/2)*x^k/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
From Vaclav Kotesovec, Feb 05 2019: (Start)
Dirichlet g.f.: ((zeta(s-1) + zeta(s-2))/2)^2.
Sum_{k=1..n} a(k) ~ n^3*(log(n)/12 + (6*gamma - 1 + Pi^2)/36), where gamma is the Euler-Mascheroni constant A001620. (End)