cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034718 Dirichlet convolution of b_n=n with b_n with b_n.

Original entry on oeis.org

1, 6, 9, 24, 15, 54, 21, 80, 54, 90, 33, 216, 39, 126, 135, 240, 51, 324, 57, 360, 189, 198, 69, 720, 150, 234, 270, 504, 87, 810, 93, 672, 297, 306, 315, 1296, 111, 342, 351, 1200, 123, 1134, 129, 792, 810, 414, 141, 2160, 294, 900, 459, 936, 159, 1620, 495
Offset: 1

Views

Author

Keywords

Comments

Row sums of triangle A329323. - Omar E. Pol, Nov 21 2019

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Aug 31 2018 *)
    f[p_, e_] := (e+1)*(e+2)*p^e/2; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 29 2020 *)

Formula

a(n) = Sum_{k*l*m = n} k*l*m, for positive integers k, l, m. This equals one sixth of the same sum over all integers. - Ralf Stephan, May 06 2005
Dirichlet g.f.: zeta^3(x-1).
Multiplicative with a(p^e) = p^e * binomial(e+2, 2). - Mitch Harris, Jun 27 2005
a(n) = n*A007425(n). Dirichlet convolution of A000027 by A038040. - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ (2*log(n)^2 + (12*gamma - 2)*log(n) + 12*gamma^2 - 6*gamma - 12*sg1 + 1) * n^2 / 8, where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Sep 11 2019
G.f.: Sum_{k>=1} k*tau(k)*x^k / (1 - x^k)^2, where tau = A000005. - Ilya Gutkovskiy, Sep 22 2020