A034808 Concatenation of 'prevprime(k) and k' is a prime.
3, 9, 37, 39, 51, 63, 87, 89, 111, 117, 123, 153, 157, 163, 173, 177, 183, 207, 211, 213, 217, 219, 239, 249, 257, 263, 267, 269, 273, 277, 279, 289, 321, 323, 327, 333, 337, 339, 343, 359, 369, 379, 407, 423, 439, 441, 459, 471, 473, 477, 479, 489, 497, 513
Offset: 1
Examples
n=333 -> previous prime is 331, thus '331333' is a prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
coQ[n_]:=PrimeQ[FromDigits[Flatten[IntegerDigits[{NextPrime[n,-1],n}]]]]; Select[Range[3,513],coQ[#]&] (* Jayanta Basu, May 30 2013 *) Select[Range[2,550],PrimeQ[NextPrime[#,-1]*10^IntegerLength[#]+#]&] (* Harvey P. Dale, Nov 22 2020 *)
-
PARI
isok(n)=n>2 && isprime(fromdigits(concat(digits(precprime(n-1)), digits(n)))) \\ Andrew Howroyd, Aug 13 2024
-
Python
from sympy import isprime, prevprime def aupto(m): return [k for k in range(3, m+1) if isprime(int(str(prevprime(k))+str(k)))] print(aupto(513)) # Michael S. Branicky, Mar 09 2021
Extensions
Offset changed by Andrew Howroyd, Aug 13 2024
Comments