A282822
a(n) = (n - 4)*n! for n>=0.
Original entry on oeis.org
-4, -3, -4, -6, 0, 120, 1440, 15120, 161280, 1814400, 21772800, 279417600, 3832012800, 56043187200, 871782912000, 14384418048000, 251073478656000, 4623936565248000, 89633231880192000, 1824676506132480000, 38926432130826240000, 868546016919060480000
Offset: 0
Cf. sequences with formula (n + k)*n! listed in
A282466.
-
Table[(n - 4) n!, {n, 0, 30}] (* or *)
RecurrenceTable[{a[0] == -4, a[n] == n a[n - 1] + n!}, a, {n, 0, 30}]
A034866
a(n) = n!*(n-4)/2, n > 4, and a(4) = 4.
Original entry on oeis.org
4, 60, 720, 7560, 80640, 907200, 10886400, 139708800, 1916006400, 28021593600, 435891456000, 7192209024000, 125536739328000, 2311968282624000, 44816615940096000, 912338253066240000
Offset: 4
-
A034866:=Concatenation([4],List([5..20],n->Factorial(n)*(n-4)/2)); # Muniru A Asiru, Feb 17 2018
-
[4] cat [Factorial(n)*(n-4)/2: n in [5..30]]; // G. C. Greubel, Feb 16 2018
-
[4,seq(factorial(n)*(n-4)/2,n=5..20)]; # Muniru A Asiru, Feb 17 2018
-
Join[{4}, Table[n!*(n-4)/2, {n,5,30}]] (* or *) Drop[With[{nn = 30}, CoefficientList[Series[x^4*(1 + x + x^2)/(6*(1 - x)^2), {x, 0, nn}], x]*Range[0, nn]!], 4] (* G. C. Greubel, Feb 16 2018 *)
-
x='x+O('x^30); Vec(serlaplace(x^4*(1+x+x^2)/(6*(1-x)^2))) \\ G. C. Greubel, Feb 16 2018
Showing 1-2 of 2 results.