A034871 Odd-numbered rows of Pascal's triangle.
1, 1, 1, 3, 3, 1, 1, 5, 10, 10, 5, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1, 1, 15, 105, 455, 1365, 3003, 5005
Offset: 0
Links
- Eduardo H. M. Brietzke, Generalization of an identity of Andrews, Fibonacci Quart. 44 (2006), no. 2, 166-171.
Programs
-
Haskell
a034871 n = a034871_list !! n a034871_list = concat $ map ([1,1] ^) [1,3..] instance Num a => Num [a] where fromInteger k = [fromInteger k] (p:ps) + (q:qs) = p + q : ps + qs ps + qs = ps ++ qs (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs * = [] -- Reinhard Zumkeller, Apr 02 2011
-
Mathematica
Take[Table[Binomial[n,m],{n,0,20},{m,0,n}],{2,-1,2}]//Flatten (* Harvey P. Dale, Dec 10 2018 *)
Formula
G.f.: (1+y)/(1-x*(1+y)^2). - Vladimir Kruchinin, Nov 22 2020