A034883
Maximum length of Euclidean algorithm starting with n and any nonnegative i
0, 1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 5, 4, 6, 4, 5, 4, 5, 5, 5, 5, 6, 6, 6, 5, 5, 7, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 7, 6, 6, 6, 5, 8, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 7, 6, 7, 7, 7, 8, 6, 6, 8, 8, 8, 7, 7, 6, 7, 7, 7, 7, 9, 6, 7, 7, 7, 7, 7, 6, 8, 7, 7, 7
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- Eric Weisstein's World of Mathematics, Euclidean Algorithm
Programs
-
Haskell
a034883 = maximum . a051010_row -- Reinhard Zumkeller, Jun 27 2013
-
Mathematica
GCDSteps[n1_, n2_] := Module[{a = n1, b = n2, cnt = 0}, While[b > 0, cnt++; {a, b} = {Min[a, b], Mod[Max[a, b], Min[a, b]]}]; cnt]; Table[Max @@ Table[GCDSteps[n, i], {i, 0, n - 1}], {n, 100}] (* T. D. Noe, Mar 24 2011 *)
-
Python
def euclid_steps(a,b): step_count = 0 while(b != 0): a , b = b , a % b step_count += 1 return step_count for n in range(1,1001): l = 0 for i in range(n): l = max(l,euclid_steps(n,i)) print(str(n)+" "+str(l)) # Ely Golden, May 18 2020
Comments