A034895 Dropping any digit gives a prime number.
22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 111, 113, 117, 119, 131, 137, 171, 173, 179, 197, 311, 317, 371, 411, 413, 417, 431, 437, 471, 473, 611, 617, 671, 711, 713, 719, 731, 1013, 1031, 1037, 1073, 1079, 1097, 1379, 1397, 1499, 1673
Offset: 1
Examples
1379 is in the sequence since 379, 179, 139 & 137 are all primes. - _Robert G. Wilson v_, Oct 07 2014
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..752 (first 485 terms from T. D. Noe)
Crossrefs
Cf. A267413.
Programs
-
Mathematica
fQ[n_] := Union[ PrimeQ[ Table[ Quotient[n, 10^k]*10^(k - 1) + Mod[n, 10^(k - 1)], {k, 1 + Floor@ Log10@ n}] ]] == {True}; Select[ Range@ 1675, fQ] (* Robert G. Wilson v, Oct 07 2014 *) ddpnQ[n_]:=With[{id=IntegerDigits[n]},AllTrue[Table[FromDigits[Drop[id,{i}]],{i,Length[id]}],PrimeQ]]; Select[Range[2000],ddpnQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 12 2017 *)
-
PARI
isok(n) = {d = digits(n); for (i=1, #d, nd = []; for (k=1, #d, if (k != i, nd = concat(nd, d[k]));); if (! isprime(subst(Pol(nd), x, 10)), return (0));); return (1);} \\ Michel Marcus, Jul 17 2014
-
PARI
DroppingAnyDigitGivesAPrime(N,b) = { \\ Property-testing function; returns 1 if true for N, 0 otherwise \\ Works with any base b. Here usable with b=10. my(k=b,m); if(N=(k\b), m=(N\k)*(k\b)+(N%(k\b)); if ((m<2)||(!isprime(m)),return(0)); k*=b); return(1); } \\ Stanislav Sykora, Jan 14 2016
-
Python
from sympy import isprime def is_A034895(n): s = str(n) return n>9 and all(isprime(int(s[:i]+s[i+1:])) for i in range(len(s))) # David Radcliffe, Dec 11 2017
Comments