cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034897 Hyperperfect numbers: x such that x = 1 + k*(sigma(x)-x-1) for some k > 0.

Original entry on oeis.org

6, 21, 28, 301, 325, 496, 697, 1333, 1909, 2041, 2133, 3901, 8128, 10693, 16513, 19521, 24601, 26977, 51301, 96361, 130153, 159841, 163201, 176661, 214273, 250321, 275833, 296341, 306181, 389593, 486877, 495529, 542413, 808861, 1005421, 1005649, 1055833
Offset: 1

Views

Author

Keywords

Comments

k=1 gives the perfect numbers, A000396. For a general k, they are called k-hyperperfect. - Jud McCranie, Aug 06 2019
There are 105200 hyperperfect numbers < 10^15. a(105200)=999990080853493. - Jud McCranie, Mar 22 2025

Examples

			21 = 1 + 2*(sigma(21)-21-1), so 21 is 2-hyperperfect. - _Jud McCranie_, Aug 06 2019
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B2.
  • J. Roberts, Lure of the Integers, see Integer 28, p. 177.

Crossrefs

Programs

  • Mathematica
    hpnQ[n_]:=Module[{c=DivisorSigma[1,n]-n-1},c>0&&IntegerQ[(n-1)/c]]; Select[Range[2,809000],hpnQ] (* Harvey P. Dale, Jan 17 2012 *)
  • PARI
    forcomposite(n=2, 2*10^6, if(1==Mod(n, sigma(n)-n-1), print1(n", "))) \\ Hans Loeblich, May 07 2019
    
  • Python
    from itertools import count, islice
    from sympy import isprime, divisor_sigma
    def A034897_gen(): # generator of terms
        return (n for n in count(2) if not isprime(n) and (n-1) % (divisor_sigma(n)-n-1) == 0)
    A034897_list = list(islice(A034897_gen(),10)) # Chai Wah Wu, Feb 18 2022

Extensions

More complete name from Jud McCranie, Aug 06 2019