cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A034898 n-th term of A034897 is an a(n)-hyperperfect number.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 12, 18, 18, 12, 2, 30, 1, 11, 6, 2, 60, 48, 19, 132, 132, 10, 192, 2, 31, 168, 108, 66, 35, 252, 78, 132, 342, 366, 390, 168, 348, 282, 498, 540, 546, 59, 12, 378, 438, 4, 222, 336, 18, 660, 138, 798, 810, 528, 450, 75, 252, 150, 948, 162
Offset: 1

Views

Author

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B2.
  • Roberts, Lure of the Integers, see Integer 28, p. 177.

Crossrefs

Cf. A034897.

Programs

  • PARI
    forcomposite(n=2, 10^8, if(1==Mod(n, sigma(n)-n-1), print1((n-1)/(sigma(n)-n-1)", "))) \\ Hans Loeblich, May 10 2019

Extensions

More terms from Donovan Johnson, Nov 20 2012

A174226 Partial sums of A034897.

Original entry on oeis.org

6, 27, 55, 356, 681, 1177, 1874, 3207, 5116, 7157, 9290, 13191, 21319, 32012, 48525, 68046, 92647, 119624, 170925, 267286, 397439, 557280, 720481, 897142, 1111415, 1361736, 1637569, 1933910, 2240091, 2629684, 3116561, 3612090, 4154503
Offset: 1

Views

Author

Jonathan Vos Post, Mar 12 2010

Keywords

Comments

Partial sums of hyperperfect numbers. The subsequence of prime values in this partial sum begins: 21319, 92647, 720481.

Examples

			a(x) = 6 + 21 + 28 + 301 + 325 + 496 + 697 + 1333 + 1909 + 2041 + 2133 + 3901 + 8128 + 10693 + 16513 + 19521 + 24601 = 92647 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A034897(i) = SUM[i=1..n] {m such that k*sigma(m) = (k+1)*m + k - 1 for some positive integer k, and sigma being the divisor function A000005; noting that k=1 gives perfect numbers}.

A019279 Superperfect numbers: numbers k such that sigma(sigma(k)) = 2*k where sigma is the sum-of-divisors function (A000203).

Original entry on oeis.org

2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056, 81129638414606681695789005144064, 85070591730234615865843651857942052864
Offset: 1

Views

Author

Keywords

Comments

Let sigma_m(n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives (2,2)-perfect numbers.
Even values of these are 2^(p-1) where 2^p-1 is a Mersenne prime (A000043 and A000668). No odd superperfect numbers are known. Hunsucker and Pomerance checked that there are no odd ones below 7 * 10^24. - Jud McCranie, Jun 01 2000
The number of divisors of a(n) is equal to A000043(n), if there are no odd superperfect numbers. - Omar E. Pol, Feb 29 2008
The sum of divisors of a(n) is the n-th Mersenne prime A000668(n), provided that there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008
Largest proper divisor of A072868(n) if there are no odd superperfect numbers. - Omar E. Pol, Apr 25 2008
This sequence is a divisibility sequence if there are no odd superperfect numbers. - Charles R Greathouse IV, Mar 14 2012
For n>1, sigma(sigma(a(n))) + phi(phi(a(n))) = (9/4)*a(n). - Farideh Firoozbakht, Mar 02 2015
The term "super perfect number" was coined by Suryanarayana (1969). He and Kanold (1969) gave the general form of even superperfect numbers. - Amiram Eldar, Mar 08 2021

Examples

			sigma(sigma(4))=2*4, so 4 is in the sequence.
		

References

  • Dieter Bode, Über eine Verallgemeinerung der vollkommenen Zahlen, Dissertation, Braunschweig, 1971.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B9, pp. 99-100.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, pp. 110-111.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, pp. 38-42.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Programs

  • Mathematica
    sigma = DivisorSigma[1, #]&;
    For[n = 2, True, n++, If[sigma[sigma[n]] == 2 n, Print[n]]] (* Jean-François Alcover, Sep 11 2018 *)
  • PARI
    is(n)=sigma(sigma(n))==2*n \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from itertools import count, islice
    def A019279_gen(): # generator of terms
        return (n for n in count(1) if divisor_sigma(divisor_sigma(n)) == 2*n)
    A019279_list = list(islice(A019279_gen(),6)) # Chai Wah Wu, Feb 18 2022

Formula

a(n) = (1 + A000668(n))/2, if there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008
Also, if there are no odd superperfect numbers then a(n) = 2^A000043(n)/2 = A072868(n)/2 = A032742(A072868(n)). - Omar E. Pol, Apr 25 2008
a(n) = 2^A090748(n), if there are no odd superperfect numbers. - Ivan N. Ianakiev, Sep 04 2013

Extensions

a(8)-a(9) from Jud McCranie, Jun 01 2000
Corrected by Michel Marcus, Oct 28 2017

A007592 Hyperperfect numbers: k = m*(sigma(k) - k - 1) + 1 for some m > 1.

Original entry on oeis.org

21, 301, 325, 697, 1333, 1909, 2041, 2133, 3901, 10693, 16513, 19521, 24601, 26977, 51301, 96361, 130153, 159841, 163201, 176661, 214273, 250321, 275833, 296341, 306181, 389593, 486877, 495529, 542413, 808861, 1005421, 1005649, 1055833, 1063141, 1232053
Offset: 1

Views

Author

Keywords

References

  • D. Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation. Zaire, Section Mathem; Vol. 4, No. 2, Dec 1978, pp. 277-302.
  • D. Minoli, New Results For Hyperperfect Numbers, Abstracts American Math. Soc., October 1980, Issue 6, Vol. 1, pp. 561.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 177.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A034897 (for m >= 1).

Programs

  • Mathematica
    hpnQ[n_]:=Module[{den=DivisorSigma[1,n]-n-1,c},If[den!=0,c=(n-1)/den, c=Pi];IntegerQ[c]&&c>1]; Select[Range[1250000],hpnQ] (* Harvey P. Dale, Aug 11 2012 *)

Extensions

More terms from Jud McCranie, Oct 15 1997

A059047 Numbers x such that sigma(x)-x divides x-1, other than prime powers.

Original entry on oeis.org

77, 611, 1073, 2033, 5293, 6031, 9983, 13969, 15947, 23489, 25241, 40301, 49901, 50249, 51101, 56759, 65017, 71677, 85079, 97217, 97783, 98099, 99101, 131237, 142091, 160133, 165101, 180767, 189281, 210367, 213053, 228719, 259741, 303239
Offset: 1

Views

Author

Jud McCranie, Dec 18 2000

Keywords

Comments

Primes and prime powers (A000961) also satisfy this equation. A059046 is the union of A000961 and A059047. These numbers are related to hyperperfect numbers (A034897) in the cited paper by te Riele.

Examples

			For x=77, sigma(77)=96, 96-77=19, which divides 77-1.
		

Crossrefs

Programs

Extensions

Offset corrected by Donovan Johnson, Nov 03 2011

A059046 Numbers n such that sigma(n)-n divides n-1.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 77, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211
Offset: 1

Views

Author

Jud McCranie, Dec 18 2000

Keywords

Comments

Primes and prime powers (A000961) satisfy this equation, but other numbers do also (A059047). This sequence is the union of A000961 and A059047. These are related to hyperperfect numbers (A034897) in the cited paper by te Riele. [Mentions this sequence]

Examples

			For x=77, sigma(77)=96, 96-77=19, which divides 77-1.
		

Crossrefs

Programs

  • Magma
    [n : n in [2..1000] | (n-1) mod (SumOfDivisors(n)-n) eq 0 ]; /* N. J. A. Sloane, Dec 23 2006 */
    
  • Mathematica
    Select[Range[2,250],Divisible[#-1,DivisorSigma[1,#]-#]&] (* Harvey P. Dale, Jan 18 2011 *)
  • PARI
    is(n)=n>1 && (n-1)%(sigma(n)-n)==0 \\ Charles R Greathouse IV, Oct 21 2015

A225150 Unitary hyperperfect numbers.

Original entry on oeis.org

6, 21, 40, 52, 60, 90, 288, 301, 657, 697, 1333, 1909, 2041, 2176, 3856, 3901, 5536, 6517, 15025, 24601, 26977, 30105, 87360, 96361, 105301, 130153, 163201, 250321, 275833, 296341, 389593, 486877, 495529, 524961, 542413, 808861, 1005421, 1005649, 1055833
Offset: 1

Views

Author

Michel Lagneau, Apr 30 2013

Keywords

Comments

A k-unitary hyperperfect number is an integer n for which the equality n = 1 + k(usigma(n) - n - 1) holds, where usigma(n) is the sum of all positive unitary divisors of n for some integer k. (See the definition of the k-hyperperfect number in the links, and the sequence A034897.)
A squarefree number is hyperperfect if, and only if this number is a unitary hyperperfect number.
In this sequence, the corresponding k are 1, 2, 3, 3, 1, 1, 7, 6, 8, 12, 18, 18, 12, 15, 15, 30, 27, 18, 24, 60, 48, 4, ...
Peter Hagis, Jr. calculated all the unitary hyperperfect numbers below 10^6. - Amiram Eldar, Aug 24 2018

Examples

			21 is in the sequence because 1 + k(usigma(21) - 21 - 1) = 1 + 2(32 - 21 - 1) = 21 where k = 2 and usigma(21) = A034448 (21) = 32.
		

References

  • J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses 2008, Entry 288 p. 74.

Crossrefs

Programs

  • Maple
    with(numtheory) :for n from 1 to 100000 do :it:=1:x:=divisors(n):n1:=nops(x):s:=1:for i from 2 to n1 do:d:=x[i]:if gcd(d,n/d)=1 then s:=s+d:else fi:od: ii:=0:for k from 1 to 2000 while (ii=0) do:z:=1+k*(s-n-1):if z=n then ii:=1:printf(`%d, `,n):else fi:od: od:
  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; hpnQ[n_]:=Module[{c= usigma[n]-n-1}, c>0&&IntegerQ[(n-1)/c]]; Select[Range[2, 1100000], hpnQ]

A133447 Nonsemiprime hyperperfect numbers.

Original entry on oeis.org

325, 2133, 10693, 16513, 19521, 51301, 159841, 176661, 214273, 306181, 1433701, 1570153, 1950625, 2469601, 2924101, 5199013, 9398593, 10445221, 15407173, 23548753, 28600321, 39147301, 60110701, 62722153, 88347781, 112803841
Offset: 1

Views

Author

Jonathan Vos Post, Dec 22 2007

Keywords

Comments

The other 25 of the first 35 values of A007592 are all semiprimes A001358.
This sequence excludes perfect numbers (A000396), which are 1-hyperperfect numbers. - Jud McCranie, Mar 23 2025.

Examples

			a(1) = 325 = 5^2 * 13.
a(2) = 2133 = 3^3 * 79.
a(3) = 10693 = 17^2 * 37.
a(4) = 16513 = 7^2 * 337.
a(5) = 19521 = 3^4 * 341.
a(6) = 51301 = 29^2 * 61.
a(7) = 159841 = 11^2 * 1321.
a(8) = 176661 = 3^5 * 727.
a(9) = 214273 = 47^2 * 97.
a(10) = 306181 = 53^2 * 109.
a(12) = 1570153 = 13 * 269 * 449. - _Jud McCranie_, Mar 23 2025
		

Crossrefs

Programs

  • Maple
    a034897 := [] : fd := fopen("b034897.txt",READ) : bf := fscanf(fd,"%d %d") : while nops(bf) <> 0 do a034897 := [op(a034897), op(2,bf) ] ; bf := fscanf(fd,"%d %d") ; od: a007592 := [] : for n in a034897 do m := (n-1)/( numtheory[sigma](n)-n-1) ; if m > 1 then a007592 := [op(a007592),n] ; fi ; od: isA100959 := proc(n) if numtheory[bigomega](n) <> 2 then true ; else false ; end: end: for n in a007592 do if isA100959(n) then printf("%d, ",n) ; fi ; od: # R. J. Mathar, Jan 08 2008

Formula

A100959 INTERSECTION A007592.

Extensions

More terms from R. J. Mathar, Jan 08 2008

A309568 Bi-unitary k-hyperperfect numbers: numbers m such that m = 1 + k * (bsigma(m) - m - 1) where bsigma(m) is the sum of bi-unitary divisors of m (A188999) and k >= 1 is an integer.

Original entry on oeis.org

6, 21, 52, 60, 90, 301, 657, 697, 1333, 1909, 2041, 2133, 3901, 15025, 24601, 26977, 96361, 130153, 163201, 176661, 250321, 275833, 296341, 389593, 486877, 495529, 542413, 808861, 1005421, 1005649, 1055833, 1063141, 1232053, 1246417, 1284121, 1357741, 1403221
Offset: 1

Views

Author

Amiram Eldar, Aug 08 2019

Keywords

Comments

The bi-unitary version of A034897.
The only bi-unitary 1-hyperperfect numbers are 6, 60, and 90 (the bi-unitary perfect numbers).
The corresponding k values are 1, 2, 3, 1, 1, 6, 8, 12, 18, 18, 12, 2, 30, 24, 60, 48, 132, 132, 192, 2, 168, 108, 66, 252, 78, 132, 342, 366, 390, 168, 348, 282, 498, 552, 540, 30, 546, ...

Examples

			21 is in the sequence since bsigma(21) = 32 and 21 = 1 + 2 * (32 - 21 - 1).
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); hpnQ[n_] := (c = bsigma[n]-n-1) > 0 && Divisible[n-1, c]; Select[Range[10^5],  hpnQ]
Showing 1-9 of 9 results.