cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059046 Numbers n such that sigma(n)-n divides n-1.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 77, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211
Offset: 1

Views

Author

Jud McCranie, Dec 18 2000

Keywords

Comments

Primes and prime powers (A000961) satisfy this equation, but other numbers do also (A059047). This sequence is the union of A000961 and A059047. These are related to hyperperfect numbers (A034897) in the cited paper by te Riele. [Mentions this sequence]

Examples

			For x=77, sigma(77)=96, 96-77=19, which divides 77-1.
		

Crossrefs

Programs

  • Magma
    [n : n in [2..1000] | (n-1) mod (SumOfDivisors(n)-n) eq 0 ]; /* N. J. A. Sloane, Dec 23 2006 */
    
  • Mathematica
    Select[Range[2,250],Divisible[#-1,DivisorSigma[1,#]-#]&] (* Harvey P. Dale, Jan 18 2011 *)
  • PARI
    is(n)=n>1 && (n-1)%(sigma(n)-n)==0 \\ Charles R Greathouse IV, Oct 21 2015

A306531 Composite numbers k such that the sum of their aliquot parts divides k-1.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 49, 64, 77, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 611, 625, 729, 841, 961, 1024, 1073, 1331, 1369, 1681, 1849, 2033, 2048, 2187, 2197, 2209, 2401, 2809, 3125, 3481, 3721, 4096, 4489, 4913, 5041, 5293, 5329, 6031, 6241
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2019

Keywords

Examples

			Aliquot parts of 77 are 1, 7, 11 and 78/(1+7+11) = 76/19 = 4.
		

Crossrefs

Union of A059047 and A246547.

Programs

  • Maple
    with(numtheory): P:=proc(n) if not isprime(n) and frac((n-1)/(sigma(n)-n))=0 then n; fi; end: seq(P(i),i=2..6241);
  • Mathematica
    q[k_] := !PrimeQ[k] && Divisible[k-1, DivisorSigma[1, k]-k]; Select[Range[2, 6500], q] (* Amiram Eldar, Jul 26 2025 *)
  • PARI
    isok(n) = (n!=1) && !isprime(n) && !frac((n-1)/(sigma(n)-n)); \\ Michel Marcus, Feb 28 2019
Showing 1-2 of 2 results.