cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A034897 Hyperperfect numbers: x such that x = 1 + k*(sigma(x)-x-1) for some k > 0.

Original entry on oeis.org

6, 21, 28, 301, 325, 496, 697, 1333, 1909, 2041, 2133, 3901, 8128, 10693, 16513, 19521, 24601, 26977, 51301, 96361, 130153, 159841, 163201, 176661, 214273, 250321, 275833, 296341, 306181, 389593, 486877, 495529, 542413, 808861, 1005421, 1005649, 1055833
Offset: 1

Views

Author

Keywords

Comments

k=1 gives the perfect numbers, A000396. For a general k, they are called k-hyperperfect. - Jud McCranie, Aug 06 2019
There are 105200 hyperperfect numbers < 10^15. a(105200)=999990080853493. - Jud McCranie, Mar 22 2025

Examples

			21 = 1 + 2*(sigma(21)-21-1), so 21 is 2-hyperperfect. - _Jud McCranie_, Aug 06 2019
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B2.
  • J. Roberts, Lure of the Integers, see Integer 28, p. 177.

Crossrefs

Programs

  • Mathematica
    hpnQ[n_]:=Module[{c=DivisorSigma[1,n]-n-1},c>0&&IntegerQ[(n-1)/c]]; Select[Range[2,809000],hpnQ] (* Harvey P. Dale, Jan 17 2012 *)
  • PARI
    forcomposite(n=2, 2*10^6, if(1==Mod(n, sigma(n)-n-1), print1(n", "))) \\ Hans Loeblich, May 07 2019
    
  • Python
    from itertools import count, islice
    from sympy import isprime, divisor_sigma
    def A034897_gen(): # generator of terms
        return (n for n in count(2) if not isprime(n) and (n-1) % (divisor_sigma(n)-n-1) == 0)
    A034897_list = list(islice(A034897_gen(),10)) # Chai Wah Wu, Feb 18 2022

Extensions

More complete name from Jud McCranie, Aug 06 2019

A038536 Odd values of k > 1 for which there are k-hyperperfect numbers.

Original entry on oeis.org

3, 11, 19, 31, 35, 59, 75, 91, 111, 115, 131, 151, 179, 235, 255, 311, 335, 339, 371, 375, 399, 411, 431, 439, 495, 515, 531, 539, 551, 591, 619, 675, 739, 791, 795, 811, 839, 851, 871, 915, 951, 999, 1015, 1035, 1039, 1055, 1071, 1075, 1155, 1231, 1351
Offset: 1

Views

Author

Keywords

Comments

((3*k+1)/2)^2*(3*k+4) is k-hyperperfect.

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, p. 79.
  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 177.

Crossrefs

Cf. A007592.

Programs

  • Mathematica
    q[k_] := Module[{m = (3*k + 1)^2*(3*k + 4)/4}, Divisible[m - 1, DivisorSigma[1, m] - m - 1]]; Select[Range[3, 1500, 2], q] (* Amiram Eldar, May 25 2025 *)
  • PARI
    isok(k) = if(k == 1 || !(k % 2), 0, my(m = (3*k + 1)^2*(3*k + 4)/4); !((m-1) % (sigma(m)-m-1))); \\ Amiram Eldar, May 25 2025

A100713 Hyperperfect brilliant numbers.

Original entry on oeis.org

21, 697, 1333, 1909, 3901, 96361, 130153, 163201, 2708413, 2768581, 4013833, 4312681, 4658449, 6392257, 7478041, 8766061, 8883841, 9427657, 9699181, 12064333, 14489437, 15042553, 16260901, 16904101, 18116737, 21396313, 28005301, 29751229, 31837801, 36640993
Offset: 1

Views

Author

Jonathan Vos Post, Dec 11 2004

Keywords

Examples

			21 = 3 * 7, 697 = 17 * 41, 1333 = 31 * 43, 1909 = 23 * 83, 3901 = 47 * 83, 96361 = 173 * 557, 130153 = 157 * 829, 163201 = 293 * 557.
a(2) = 697 because 697 is a 12-hyperperfect number, A028500(2) and is a brilliant number because 697 = 17 * 41.
		

References

  • Richard K. Guy, "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers", Section B2 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 45-53, 1994.
  • Joe Roberts, The Lure of the Integers, Washington, DC: Math. Assoc. Amer., p. 177, 1992.

Crossrefs

Formula

a(n) is an element in the intersection of A007592 and A078972. a(n)=m(sigma(a(n))-a(n)-1)+1 for some m>1 and a(n) is a semiprime with the same number of digits in each prime factor.

Extensions

More terms from Amiram Eldar, Dec 01 2020

A133447 Nonsemiprime hyperperfect numbers.

Original entry on oeis.org

325, 2133, 10693, 16513, 19521, 51301, 159841, 176661, 214273, 306181, 1433701, 1570153, 1950625, 2469601, 2924101, 5199013, 9398593, 10445221, 15407173, 23548753, 28600321, 39147301, 60110701, 62722153, 88347781, 112803841
Offset: 1

Views

Author

Jonathan Vos Post, Dec 22 2007

Keywords

Comments

The other 25 of the first 35 values of A007592 are all semiprimes A001358.
This sequence excludes perfect numbers (A000396), which are 1-hyperperfect numbers. - Jud McCranie, Mar 23 2025.

Examples

			a(1) = 325 = 5^2 * 13.
a(2) = 2133 = 3^3 * 79.
a(3) = 10693 = 17^2 * 37.
a(4) = 16513 = 7^2 * 337.
a(5) = 19521 = 3^4 * 341.
a(6) = 51301 = 29^2 * 61.
a(7) = 159841 = 11^2 * 1321.
a(8) = 176661 = 3^5 * 727.
a(9) = 214273 = 47^2 * 97.
a(10) = 306181 = 53^2 * 109.
a(12) = 1570153 = 13 * 269 * 449. - _Jud McCranie_, Mar 23 2025
		

Crossrefs

Programs

  • Maple
    a034897 := [] : fd := fopen("b034897.txt",READ) : bf := fscanf(fd,"%d %d") : while nops(bf) <> 0 do a034897 := [op(a034897), op(2,bf) ] ; bf := fscanf(fd,"%d %d") ; od: a007592 := [] : for n in a034897 do m := (n-1)/( numtheory[sigma](n)-n-1) ; if m > 1 then a007592 := [op(a007592),n] ; fi ; od: isA100959 := proc(n) if numtheory[bigomega](n) <> 2 then true ; else false ; end: end: for n in a007592 do if isA100959(n) then printf("%d, ",n) ; fi ; od: # R. J. Mathar, Jan 08 2008

Formula

A100959 INTERSECTION A007592.

Extensions

More terms from R. J. Mathar, Jan 08 2008

A174226 Partial sums of A034897.

Original entry on oeis.org

6, 27, 55, 356, 681, 1177, 1874, 3207, 5116, 7157, 9290, 13191, 21319, 32012, 48525, 68046, 92647, 119624, 170925, 267286, 397439, 557280, 720481, 897142, 1111415, 1361736, 1637569, 1933910, 2240091, 2629684, 3116561, 3612090, 4154503
Offset: 1

Views

Author

Jonathan Vos Post, Mar 12 2010

Keywords

Comments

Partial sums of hyperperfect numbers. The subsequence of prime values in this partial sum begins: 21319, 92647, 720481.

Examples

			a(x) = 6 + 21 + 28 + 301 + 325 + 496 + 697 + 1333 + 1909 + 2041 + 2133 + 3901 + 8128 + 10693 + 16513 + 19521 + 24601 = 92647 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A034897(i) = SUM[i=1..n] {m such that k*sigma(m) = (k+1)*m + k - 1 for some positive integer k, and sigma being the divisor function A000005; noting that k=1 gives perfect numbers}.
Showing 1-5 of 5 results.