cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035041 a(n) = 2^n - C(n,0) - C(n,1) - ... - C(n,8).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 11, 67, 299, 1093, 3473, 9949, 26333, 65536, 155382, 354522, 784626, 1695222, 3593934, 7507638, 15505590, 31746651, 64574877, 130712029, 263644133, 530396371, 1065084887, 2136022699, 4279934123, 8570386546
Offset: 0

Views

Author

Keywords

Crossrefs

a(n)= A055248(n, 9). Partial sums of A035040.
Cf. A007318.

Programs

  • Haskell
    a035041 n = a035041_list !! n
    a035041_list = map (sum . drop 9) a007318_tabl
    -- Reinhard Zumkeller, Jun 20 2015
  • Maple
    a:=n->sum(binomial(n,j),j=9..n): seq(a(n), n=0..33); # Zerinvary Lajos, Jan 04 2007
  • Mathematica
    a=1;lst={};s1=s2=s3=s4=s5=s6=s7=s8=s9=0;Do[s1+=a;s2+=s1;s3+=s2;s4+=s3;s5+=s4;s6+=s5;s7+=s6;s8+=s7;s9+=s8;AppendTo[lst,s9];a=a*2,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *)
    Table[Sum[ Binomial[n, k], {k, 9, n}], {n, 0, 33}] (* Zerinvary Lajos, Jul 08 2009 *)

Formula

G.f.: x^9/((1-2*x)*(1-x)^9).