cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035055 Number of forests of different trees.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 24, 49, 105, 231, 517, 1188, 2783, 6643, 16101, 39606, 98605, 248287, 631214, 1618878, 4183964, 10889305, 28517954, 75111521, 198851386, 528929895, 1412993746, 3789733399, 10201625514, 27555373561, 74664487653, 202908119046, 552939614498
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Crossrefs

Cf. A005195.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    h:= proc(n) option remember; `if`(n=0, 1, b(n)-(add(b(k)*b(n-k),
          k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2)
        end:
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(h(i), j)*g(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> g(n, n):
    seq(a(n), n=0..40); # Alois P. Heinz, May 19 2013
  • Mathematica
    nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; a[0] = 0;
    b = Flatten[
      sol = SolveAlways[
        0 == Series[
          t[x] - x Product[1/(1 - x^i)^ a[i], {i, 1, nn}], {x, 0, nn}],
        x]; Table[a[n], {n, 0, nn}] /. sol];
    r[x_] := Sum[b[[n]] x^(n - 1), {n, 1, nn + 1}]; c =
    Drop[CoefficientList[
       Series[r[x] - (r[x]^2/2 - r[x^2]/2), {x, 0, nn}], x],
      1]; CoefficientList[
    Series[Product[(1 + x^i)^c[[i]], {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Nov 15 2014 *)

Formula

Weigh transform of A000055.
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856519949747148175..., c = 0.89246007934060351292465521837... . - Vaclav Kotesovec, Aug 25 2014