A035055 Number of forests of different trees.
1, 1, 1, 2, 3, 6, 12, 24, 49, 105, 231, 517, 1188, 2783, 6643, 16101, 39606, 98605, 248287, 631214, 1618878, 4183964, 10889305, 28517954, 75111521, 198851386, 528929895, 1412993746, 3789733399, 10201625514, 27555373561, 74664487653, 202908119046, 552939614498
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Transforms
Crossrefs
Cf. A005195.
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n<2, n, (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1)) end: h:= proc(n) option remember; `if`(n=0, 1, b(n)-(add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2) end: g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(h(i), j)*g(n-i*j, i-1), j=0..n/i))) end: a:= n-> g(n, n): seq(a(n), n=0..40); # Alois P. Heinz, May 19 2013
-
Mathematica
nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; a[0] = 0; b = Flatten[ sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^ a[i], {i, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 0, nn}] /. sol]; r[x_] := Sum[b[[n]] x^(n - 1), {n, 1, nn + 1}]; c = Drop[CoefficientList[ Series[r[x] - (r[x]^2/2 - r[x^2]/2), {x, 0, nn}], x], 1]; CoefficientList[ Series[Product[(1 + x^i)^c[[i]], {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Nov 15 2014 *)
Formula
Weigh transform of A000055.
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856519949747148175..., c = 0.89246007934060351292465521837... . - Vaclav Kotesovec, Aug 25 2014