A035065 Numbers k such that k! has a prime number of digits.
4, 5, 6, 8, 10, 14, 15, 20, 23, 27, 29, 33, 35, 39, 43, 51, 58, 68, 70, 84, 86, 89, 90, 95, 104, 107, 110, 111, 116, 117, 119, 120, 133, 134, 136, 139, 147, 150, 158, 159, 170, 183, 193, 199, 206, 211, 224, 229, 235, 239, 244, 249, 254, 270, 279, 282, 291, 299
Offset: 1
Examples
a(1)=4 because 4! = 24 has 2 (a prime) digits. 23! = 25852016738884976640000 has exactly 23 digits!
Links
Programs
-
Magma
[n: n in [1..300] | IsPrime(Floor(Log(10, Factorial(n))+1))]; // Vincenzo Librandi, Mar 28 2018
-
Maple
filter:= n -> isprime(1+ilog10(n!)): select(filter, [$1..1000]); # Robert Israel, Mar 27 2018
-
Mathematica
Select[ Range[300], PrimeQ[ Floor[ Log[10, #! ] + 1]] & ]
-
PARI
isok(n) = isprime(#digits(n!)); \\ Michel Marcus, Mar 28 2018
Extensions
Offset corrected by Robert Israel, Mar 27 2018