cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A035076 a(n) is root of square starting with digit 9: first term of runs.

Original entry on oeis.org

30, 95, 300, 949, 3000, 9487, 30000, 94869, 300000, 948684, 3000000, 9486833, 30000000, 94868330, 300000000, 948683299, 3000000000, 9486832981, 30000000000, 94868329806, 300000000000, 948683298051, 3000000000000
Offset: 2

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Crossrefs

Cf. A067479 (squares), A017936.
Cf. 2: A035069, 3: A035070, 4: A035071, 5: A035072, 6: A035073, 7: A035074, 8: A035075.

Programs

  • Mathematica
    Ceiling[Sqrt[9*10^Range[2,30]]] (* Harvey P. Dale, Aug 07 2013 *)

Formula

a(n) = ceiling(sqrt(9*10^n)), n > 1.

A045860 Numbers whose square has initial digit '6'.

Original entry on oeis.org

8, 25, 26, 78, 79, 80, 81, 82, 83, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799
Offset: 1

Views

Author

Keywords

Crossrefs

Supersequence of A035073.
Cf. A045789.

Programs

  • Mathematica
    Flatten[Table[Range[Ceiling[Sqrt[6*10^n]],Floor[Sqrt[7*10^n]]],{n,5}]] (* Harvey P. Dale, Apr 03 2013 *)
  • Python
    from math import isqrt
    def aupto(limit):
        alst, d, end = [], 1, 0
        while end < limit:
            start, end = isqrt(6*10**d) + 1, isqrt(7*10**d-1)
            alst.extend([an for an in list(range(start, end+1)) if an <= limit])
            d += 1
        return alst
    print(aupto(799)) # Michael S. Branicky, Aug 25 2021

A067476 Smallest n-digit square starting with 6.

Original entry on oeis.org

64, 625, 6084, 60025, 600625, 6002500, 60000516, 600005025, 6000051600, 60000012601, 600000512409, 6000001260100, 60000004765089, 600000028030404, 6000000011750889, 60000000353550625, 600000001175088900
Offset: 2

Views

Author

Amarnath Murthy, Feb 09 2002

Keywords

Crossrefs

Cf. A035073 (roots), A045789, A067479 (2..9).

Programs

  • Mathematica
    Ceiling[Sqrt[6*10^Range[20]]]^2 (* Harvey P. Dale, Feb 28 2025 *)
  • PARI
    for(n=2,21,a=ceil(sqrt(6*10^(n-1)))^2; print(a))

Formula

a(n) = ceiling(sqrt(6*10^(n-1)))^2, n>1. - Rick L. Shepherd, Feb 18 2002

Extensions

More terms from Rick L. Shepherd, Feb 18 2002
Showing 1-3 of 3 results.