A067479
Smallest n-digit square starting with 9, or 0 if no such number exists.
Original entry on oeis.org
9, 0, 900, 9025, 90000, 900601, 9000000, 90003169, 900000000, 9000127161, 90000000000, 900001331856, 9000000000000, 90000000369889, 900000000000000, 9000000036988900, 90000000000000000, 900000001801523401
Offset: 1
A035069
a(n) is root of square starting with digit 2: first term of runs.
Original entry on oeis.org
5, 15, 45, 142, 448, 1415, 4473, 14143, 44722, 141422, 447214, 1414214, 4472136, 14142136, 44721360, 141421357, 447213596, 1414213563, 4472135955, 14142135624, 44721359550, 141421356238, 447213595500, 1414213562374
Offset: 1
-
Table[Ceiling @ Sqrt[2 * 10^n], {n, 1, 24}] (* Amiram Eldar, Oct 08 2019 *)
A035070
a(n) is root of square starting with digit 3: first term of runs.
Original entry on oeis.org
6, 18, 55, 174, 548, 1733, 5478, 17321, 54773, 173206, 547723, 1732051, 5477226, 17320509, 54772256, 173205081, 547722558, 1732050808, 5477225576, 17320508076, 54772255751, 173205080757, 547722557506, 1732050807569, 5477225575052, 17320508075689, 54772255750517
Offset: 1
-
Table[Ceiling @ Sqrt[3 * 10^n], {n, 1, 24}] (* Amiram Eldar, Oct 08 2019 *)
-
from math import isqrt
def a(n): return isqrt(3*10**n) + 1
print([a(n) for n in range(1, 28)]) # Michael S. Branicky, Jun 18 2021
A035073
a(n) is root of square starting with digit 6: first term of runs.
Original entry on oeis.org
8, 25, 78, 245, 775, 2450, 7746, 24495, 77460, 244949, 774597, 2449490, 7745967, 24494898, 77459667, 244948975, 774596670, 2449489743, 7745966693, 24494897428, 77459666925, 244948974279, 774596669242, 2449489742784, 7745966692415, 24494897427832, 77459666924149
Offset: 1
A035075
a(n) = ceiling(sqrt(8*10^n)).
Original entry on oeis.org
9, 29, 90, 283, 895, 2829, 8945, 28285, 89443, 282843, 894428, 2828428, 8944272, 28284272, 89442720, 282842713, 894427191, 2828427125, 8944271910, 28284271248, 89442719100, 282842712475, 894427191000, 2828427124747
Offset: 1
-
Ceiling[Sqrt[8*10^Range[30]]] (* Harvey P. Dale, Apr 12 2013 *)
-
from math import isqrt
def a(n): return isqrt(8*10**n) + 1
print([a(n) for n in range(1, 25)]) # Michael S. Branicky, Sep 29 2021
A035071
a(n) = ceiling(sqrt(4*10^n)).
Original entry on oeis.org
2, 7, 20, 64, 200, 633, 2000, 6325, 20000, 63246, 200000, 632456, 2000000, 6324556, 20000000, 63245554, 200000000, 632455533, 2000000000, 6324555321, 20000000000, 63245553204, 200000000000, 632455532034, 2000000000000
Offset: 0
-
Table[Ceiling @ Sqrt[4 * 10^n], {n, 0, 24}] (* Amiram Eldar, Oct 08 2019 *)
A035072
a(n) is root of square starting with digit 5: first term of runs.
Original entry on oeis.org
23, 71, 224, 708, 2237, 7072, 22361, 70711, 223607, 707107, 2236068, 7071068, 22360680, 70710679, 223606798, 707106782, 2236067978, 7071067812, 22360679775, 70710678119, 223606797750, 707106781187, 2236067977500
Offset: 2
-
Table[Ceiling @ Sqrt[5 * 10^n], {n, 2 , 24}] (* Amiram Eldar, Oct 08 2019 *)
A035074
a(n) is root of square starting with digit 7: first term of runs.
Original entry on oeis.org
27, 84, 265, 837, 2646, 8367, 26458, 83667, 264576, 836661, 2645752, 8366601, 26457514, 83666003, 264575132, 836660027, 2645751312, 8366600266, 26457513111, 83666002654, 264575131107, 836660026535, 2645751311065
Offset: 2
Showing 1-8 of 8 results.
Comments