cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A035076 a(n) is root of square starting with digit 9: first term of runs.

Original entry on oeis.org

30, 95, 300, 949, 3000, 9487, 30000, 94869, 300000, 948684, 3000000, 9486833, 30000000, 94868330, 300000000, 948683299, 3000000000, 9486832981, 30000000000, 94868329806, 300000000000, 948683298051, 3000000000000
Offset: 2

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Crossrefs

Cf. A067479 (squares), A017936.
Cf. 2: A035069, 3: A035070, 4: A035071, 5: A035072, 6: A035073, 7: A035074, 8: A035075.

Programs

  • Mathematica
    Ceiling[Sqrt[9*10^Range[2,30]]] (* Harvey P. Dale, Aug 07 2013 *)

Formula

a(n) = ceiling(sqrt(9*10^n)), n > 1.

A045862 Numbers whose square has initial digit '8'.

Original entry on oeis.org

9, 29, 90, 91, 92, 93, 94, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],Take[IntegerDigits[#^2],1]=={8}&] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    isok(k) = digits(k^2)[1] == 8; \\ Michel Marcus, Sep 29 2021
  • Python
    from math import isqrt
    def auptorun(runs):
        alst = []
        for n in range(1, runs+1):
            alst.extend(list(range(isqrt(8*10**n) + 1, isqrt(9*10**n - 1)+1)))
        return alst
    print(auptorun(5)) # Michael S. Branicky, Sep 29 2021
    

A067478 Smallest n-digit square starting with 8.

Original entry on oeis.org

81, 841, 8100, 80089, 801025, 8003241, 80013025, 800041225, 8000050249, 80000162649, 800001447184, 8000004951184, 80000001609984, 800000042569984, 8000000160998400, 80000000297200369, 800000000000150481, 8000000001435765625, 80000000000015048100
Offset: 2

Views

Author

Amarnath Murthy, Feb 09 2002

Keywords

Crossrefs

Cf. A000290, A035075 (roots), A045791, A067479 (2..9).

Programs

  • Mathematica
    nS[n_] := Module[{lr = Floor[Sqrt[n]]}, If[lr^2==n, lr^2, (lr + 1)^2]]; Table[nS[8 10^i], {i, 0, 20}]

Formula

a(n) = ceiling(sqrt(8*10^(n-1)))^2. - Sascha Kurz, Mar 18 2002

Extensions

More terms from Harvey P. Dale, Feb 17 2002
Incorrect a(1) removed by Jon E. Schoenfield, Mar 21 2021
Showing 1-3 of 3 results.