cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035105 a(n) = LCM of Fibonacci sequence {F_1,...,F_n}.

Original entry on oeis.org

1, 1, 2, 6, 30, 120, 1560, 10920, 185640, 2042040, 181741560, 1090449360, 254074700880, 7368166325520, 449458145856720, 21124532855265840, 33735878969859546480, 640981700427331383120, 2679944489486672512824720, 109877724068953573025813520
Offset: 1

Views

Author

Fred Schwab (fschwab(AT)nrao.edu)

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          ilcm(a(n-1), combinat[fibonacci](n)))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Feb 12 2018
  • Mathematica
    a[ n_ ] := LCM@@Table[ Fibonacci[ k ], {k, 1, n} ]
    With[{fibs=Fibonacci[Range[20]]},Table[LCM@@Take[fibs,n],{n, Length[ fibs]}]] (* Harvey P. Dale, Apr 29 2019 *)
  • PARI
    a(n)=lcm(apply(fibonacci,[1..n])) \\ Charles R Greathouse IV, Oct 07 2016
    
  • Python
    from math import lcm
    from sympy import fibonacci
    def A035105(n): return lcm(*(fibonacci(i) for i in range(1,n+1))) # Chai Wah Wu, Jul 17 2022

Formula

log(a(n)) ~ 3*n^2*log(phi)/Pi^2, where phi is the golden ratio, or equivalently lim_{n->oo} sqrt(6*log(A003266(n))/log(a(n))) = Pi. - Amiram Eldar, Jan 30 2019